• Title/Summary/Keyword: 지보

Search Result 615, Processing Time 0.024 seconds

Development of Trenchless Tunneling Method Using Pressurizing Support and Its Field Application (가압식 지보를 이용한 비개착 터널공법 개발 및 현장적용 사례)

  • Kim, Dae-Young;Lee, Hong-Sung;Sim, Bo-Kyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.7
    • /
    • pp.17-30
    • /
    • 2012
  • A new trenchless tunneling method using pressurizing support has been developed. As it overcomes shortcomings of conventional methods, it is applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies the pressure corresponding to the magnitude of the relaxed earth pressure caused by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through several ways such as numerical tests and various model tests. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long road tunnel that passes under Yeongdong Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months. It decreases the construction period to 35% compared to that of conventional methods, and ground displacement was almost negligible.

The Effect of Seepage Forces on the Ground Reaction Curve of Tunnel (침투력이 터널의 지반반응곡선에 미치는 영향)

  • Lee Seok-Won;Jung Jong-Won;Nam Seok-Woo;Lee In-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.3
    • /
    • pp.87-98
    • /
    • 2005
  • When a tunnel is excavated below groundwater table, the groundwater flows into the excavated wall of tunnel and seepage forces are acting on the tunnel wall. The ground reaction curve is defined as the relationship between internal pressure and radial displacement of tunnel wall. Therefore, the ground reaction curve is significantly affected by seepage forces. In this study, the theoretical solutions of ground reaction curves were derived for both the dry condition and the seepage forces. The theoretical solutions derived were validated by numerical analysis. The ground reaction curves with the support characteristic curve were also analyzed in various conditions of groundwater table. Finally, the theoretical solutions of the ground reaction curve derived in this study can be utilized easily to determine the appropriate time of support systems, the stiffness of support system and so forth for the reasonable design.

Development of pressurizing support tunneling method and case study of its field application (가압지보 터널공법 개발 및 현장적용 사례 분석)

  • Kim, Dea-Young;Lee, Hong-Sung;Lee, Se-Jin;Lee, Hee-Kwang;Sim, Bo-Kyoung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.14 no.4
    • /
    • pp.397-419
    • /
    • 2012
  • The pressurizing support tunneling method has been developed that overcomes shortcomings of conventional trenchless methods and applied to the field. The main concept of the new method is the pressurization system which, by means of pressurization bag between outer flange of steel ribs and excavated perimeter, applies higher pressure than the pressure relaxed by excavation to the ground to prevent ground displacement. The stability of the support members and effect of displacement control of the new method were verified through 3D numerical analyses. The new method was applied to the construction of a 10.7 m wide, 7.9 m high and 85 m long ramp tunnel that passes under ${\bigcirc}{\bigcirc}$ Expressway. By applying the new method, the tunnel construction was successfully completed in 13.5 months which decreases construction time to 35% compared to conventional methods, and ground displacement was almost negligible.

An Experimental Study on Shield TBM Tunnel Face Stability in Soft Ground (연약지반에서의 쉴드 TBM 굴착시 막장면 안정성 평가를 위한 실험적 연구)

  • Kim, Yong-Man;Lee, Sang-Duk;Choo, Seok-Yeon;Koh, Sung-Yil
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.1
    • /
    • pp.47-51
    • /
    • 2013
  • In this study, we carried out an experimental shield TBM excavation model test using a down-scale device in soft clay, to understand tunnel-face stability properties in relation to changes in slurry pressure. We performed five tests according to tunnel depth (0.5D, 0.75D, 1.0D, 1.25D, 1.5D), and compared theoretical tunnel-face pressure with model test results. The range in theoretical tunnel-face slurry pressure ($P_{min}{\leq}P_{slurry\;pressure}{\leq}P_{max}$), which is determined by earth pressure and water level, was very similar to the model test result. This result was due to the more isotropic condition of the soft clay ground, than of rocky ground.

Consideration on design procedure of room-and-pillar underground structure part I: parametric study (주방식 지하구조물의 설계 방법 고찰 Part I: 매개변수 연구)

  • Lee, Chulho;Hwang, Jedon;Kim, Eunhye;Chang, Soo-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • In this study, in order to suggest the design method for supports in the room-and-pillar underground structure, the case study was carried out. In the case study, shape of rock pillar and room was mainly considered. From the analysis, a displacement at the roof, the maximum principle stress and plastic state were examined. To optimize variables in the case study, cases from the Seoul metro station were analyzed, then a target depth of the underground structure and ground conditions were determined. And the height of rock pillar and room were chosen from the assumed purpose of underground space, i.e. living/office and warehouse. Total cases of analysis was 180 cases including 3 types of ground condition, 5 types of rock pillar and 6 types of roof span. It is expected that results from analysis can be used to determine the installation of support in room-and-pillar underground structure with stability, utilization efficiency of underground space and applicability of vehicles.

A Study on the Lattice Girder by Increasing Contacting Area between Spider and Rod (스파이더와 강봉간 접촉면적을 증가시킨 격자지보재에 대한 연구)

  • Nam, Joong-Woo;Kim, Jin-Kyo;Cho, Yong-Gyo;Chun, Byung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.10
    • /
    • pp.17-25
    • /
    • 2012
  • Shotcrete, rockbolt, and steel rib are installed to support ground after tunnel was excavated. These are important supports for NATM applied tunnels. Recently, lattice girder is increasingly used because it is easily installed. In this study, we developed a new lattice girder by increasing contacting area between spider and rod. To verify the effect of the new lattice girder, the 3-point and 4-point flexural strength tests were carried out for LG-$50{\times}20{\times}30$, LG-$70{\times}20{\times}30$, LG-$95{\times}22{\times}32$. As a result, in case of contacting area, strength of new SGS lattice girder is 17.95% higher than that of original lattice girder. In case of weakness point, strength of new SGS lattice girder is 19.37% higher than that of original lattice girder.

Development of a Powder-type Thin Spray-on Liner and Its Performance Evaluation at Different Curing Ages (분말형 박층 뿜칠 라이너 시작품의 제작과 성능평가)

  • Chang, Soo-Ho;Lee, Gyu-Phil;Han, Jin-Tae;Choi, Soon-Wook;Hwang, Gwi-Sung;Choi, Myung-Sik
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.293-302
    • /
    • 2015
  • Thin Spray-on Liner (TSL) has been considered as a new rock support to replace shotcrete as well as wire mesh. However, the development of its original production technology is highly in demand since it is not open to the public. Therefore, two kinds of powder-type TSL prototypes were developed as the first development stage. Then, their mechanical properties were experimentally compared with those of a two-component foreign TSL material including both of liquid and powder components. From a series of experiments, the first TSL prototype mixing condition satisfied every TSL performance requirements specified by EFNRAC (2008), and showed much higher tensile and bond strengths than those of the two-component foreign TSL, even though the other TSL prototype cannot be used as a support member since its elongation at break is much lower than its corresponding EFNARC (2008) performance criterion. In addition, a further study to increase the ductility of the first TSL prototype might be necessary to guarantee its higher applicability to field conditions.