• 제목/요약/키워드: 지방세포 분화

검색결과 337건 처리시간 0.03초

Compound K의 인슐린분비 및 탄수화물 대사에 미치는 영향 (Effects of Compound K on Insulin Secretion and Carbohydrate Metabolism)

  • 최윤숙;한기철;한은정;박금주;성종환;정성현
    • Journal of Ginseng Research
    • /
    • 제31권2호
    • /
    • pp.79-85
    • /
    • 2007
  • 진세노사이드의 인슐린 분비 활성을 비교해 본 결과 PPD 계열 진세노사이드가 인슐린의 분비를 촉진하는 경향을 보였으며, 그 중에서도 CK의 인슐린 분비 촉진 효과가 가장 뛰어났다. CK는 RIN-m5F cell line과 일차 배양한 췌장 소도 세포에서 용량 의존적으로 인슐린의 분비를 촉진하였고 이러한 CK의 인슐린 분비 촉진 기전은 ATP-sensitive $K^+$ 채널의 봉쇄에 의한 것임을 확인하였다. H4IIE cell line에서 간 세포내 당신생과 관련된 효소의 발현을 측정한 결과 CK는 dexamethasone/cAMP에 의한 PEPCK 와 G6Pase의 발현을 억제하였다. 이로 미루어 볼 때, CK는 간에서 당의 신생을 억제하여 공복 시 혈당을 감소시킬 수 있음을 시사하였다. 또한 3T3-L1 cell line에서 TG의 함량과 $PPAR-{\gamma}$ 유전자의 발현에 미치는 영향을 살펴본 결과 CK는 $PPAR-{\gamma}$의 발현을 억제하여 결과 지방세포의 분화를 억제하였다. 결론적으로 CK는 췌장에서 ATP-sensitive $K^+$ channel을 봉쇄함으로 인슐린 분비를 촉진시키고 또한 간세포에서 당 신생을 억제함으로 식후 및 공복 시 혈당을 감소시킬 것으로 기대된다.

국내산 해조류 4종의 물과 에탄올 추출물이 3T3-L1에서 지방세포 분화에 미치는 영향 (Effects of Water and Ethanol Extracts from Four Types of Domestic Seaweeds on Cell Differentiation in 3T3-L1 Cell Line)

  • 오지현;이윤경
    • 동아시아식생활학회지
    • /
    • 제25권6호
    • /
    • pp.990-998
    • /
    • 2015
  • The aim of this study was to examine the cytotoxicity and potential inhibitory effects from four types of edible domestic brown seaweeds, Undaria pinnatifida (UP), Laminaria japonica (LJ), Sargassum fulvellum (SF), and Hizikia fusiforme (HF), on preadipocyte differentiation in 3T3-L1 cell line. Water and ethanol extracts from the four types of seaweeds were prepared and tested for cell viability in the 3T3-L1 cell line by using MTT assay. In addition, various doses of the water extract of seaweeds (WES) and ethanol extract of seaweeds (EES) were treated at the beginning of 3T3-L1 differentiation and continued until the cells were fully differentiated to adipocytes. Oil Red-O staining was performed to determine the potential cell differentiation inhibitory effects of the WES and EES by measuring the levels of lipid droplet accumulation in 3T3-L1 adipocytes. $PPAR{\gamma}$ mRNA expression levels were significantly reduced by WESs of UP, LJ, and HF as well as EESs of LJ and HF. As a result, we observed the superior cell differentiation inhibitory effects of WES compared to that of EES in a dose-dependent manner without any significant cytotoxicity in mouse adipocytes.

보중치습탕이 3T3-L1 지방전구세포의 분화 및 지방생성 억제에 미치는 영향 (Inhibitory Effects of Bojungchiseub-tang on Adipocyte Differentiation and Adipogenesis in 3T3-L1 Preadipocytes)

  • 이수정;김원일;강경화
    • 동의생리병리학회지
    • /
    • 제28권3호
    • /
    • pp.288-295
    • /
    • 2014
  • Bojungchiseub-tang (BJCST) has been used in symptoms and signs of edema, dampness-phlegm, kidney failure, and so on. BJCST is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and adipogenesis. In the present study, we examined the effects and mechanism of BJCST on transcription factors and adipogenic genes of 3T3-L1 preadipocytes to understand its inhibitory effects on adipocyte differentiation and adipogenesis. Our results showed that BJCST significantly inhibited differentiation and adipogenesis of 3T3-L1 preadipocytes in a dose-dependent manner. To elucidate the mechanism of the effects of BJCST on lowering lipid content in 3T3-L1 adipocytes, we examined whether BJCST modulate the expressions of transcription factors to induce adipogenesis and adipogenic genes related to regulate accumulation of lipids. As a result, the expression of steroid regulatory element-binding protein (SREBP)1, cytidine-cytidine-adenosine-adenosine-thymidine (CCAAT)/enhancer binding proteins ${\alpha}$ ($C/EBP{\alpha}$), $C/EBP{\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$ ($PPAR{\gamma}$) genes, which induce the adipose differentiation, liver X receptor $(LXR){\alpha}$ and fatty acid synthase (FAS) genes, which induce lipogenesis and adipose-specific aP2, Adipsin, lipoprotein lipase (LPL), CD36, TGF-${\beta}$, leptin and adiponectin genes, which compose fat formation were decreased. BJCST also reduced the expression of acyl CoA oxidase (ACO) and uncoupling protein (UCP) genes related to lipid oxidation. In conclusion, BJCST could regulate transcript factor related to induction of adipose differentiation and inhibited the accumulation of lipids and expression of adipogenic genes.

오미자 추출물의 지방세포 분화 억제 효과 (Inhibition Effects of Galla Chinenisis Extract on Adipocyte Differentiation in OP9 Cells)

  • 박선영;황홍연;서은아;권강범;류도곤
    • 동의생리병리학회지
    • /
    • 제26권4호
    • /
    • pp.455-461
    • /
    • 2012
  • Obesity is associated with numerous diseases such as type 2 diabetes, hypertension and cancer. Inhibition of adipogenesis is a effectite strategy to anti-obesity. In this study, Galla Chinenisis extract (GCE) inhibited adipocyte differentiation in OP9 cells. There was no cytotoxicity when cells were treated with GCE in designated time intervals, unaffected by concentration. In this cell model, increases in fat storage were inhibited by 2 days treatment with various concentration of GCE, visualized by Oil red-O, BODIPY and DAPI staining. To understand the underlying mechanism at the molecular level, the effects of GCE were examined on the expression of the genes involved in adipogenesis by real-time PCR. In the progress of adipocyte differentiation with GCE-treated, the mRNA level of adipogenic genes such as peroxisome-proliferator-activated receptors gamma ($PPAR{\gamma}$), computer-assisted axial tomography/enhancer binding protein-alpha ($C/EBP{\alpha}$) were decreased. Also, GCE treatment inhibited increase of mRNA expression, which is adipogenic factor such as fatty acid synthase (FAS), hormone-sensitve lipase (HSL), lipoprotein lipase (LPL), and adipocyte-specific lipid binding protein (aP2). Therefore, the result of this study suggest that Galla Chinenisis extract can prevent adipocyte differentiation and GCE may have a great potential as a novel anti-adipogenic agent.

합환피 추출물의 지방세포 분화 억제 효과 (Inhibitory Effects of Albizziae Cortex Extracts on Adipocyte Differentiation)

  • 이수호;이영래;류도곤;김하림;김미성;김병숙;권강범
    • 동의생리병리학회지
    • /
    • 제30권6호
    • /
    • pp.447-451
    • /
    • 2016
  • In this study, Albizziae Cortex extracts (ACE) have potent effects on adipogenesis and on lipolysis in OP9 cells. There was no cytotoxicity while cells were treated with ACE in designated time intervals, unaffected by various concentrations. In the cells with ACE-treated, increases in fat storage were inhibited, and also confirmed by Oil red O. To understand the underlying mechanism at the molecular level, the effects of ACE were examined on the expression of the genes involved in adipogenesis by using real-time PCR. In this cell model, the mRNA level of adipogenic genes such as peroxisome-proliferator-activated receptors gamma ($PPAR{\gamma}$) and CAAAT/enhancer binding protein alpha ($C/EBP{\alpha}$) were decreased by ACE treatment, comparing with those of control group. Collectively, our data suggest that ACE may have great potential as a novel anti-obesity agent.

방풍통성산가미방(防風通聖散加味方)이 비만유도(肥滿誘導) 백풍(白嵐)와 지방세포(脂肪細胞) 분화(分化)에 미치는 영향(影響) (Anti-obestic Effects of Bangpoongtongsungcankamibang(BTSK) in 3%3-L1 preadipocyte cells and the Lipid Metabolism of Obesity induced Rats)

  • 이진용;김덕곤;안홍식
    • 대한한방소아과학회지
    • /
    • 제20권1호
    • /
    • pp.219-240
    • /
    • 2006
  • Objective : This experimental study was designed to determine the anti-obestic effects of Bangpoongtongsungcankamibang(BTSK). Method : In vitro, BTSK extracts of various concentration (50,100, 200 $200{\mu}g/ml$)were added examination. The protein and mRNA expression of $C/EBP{\alpha}$ and $PPAR{\gamma}$ receptor was measured by western blot assay and RT-PCR. In vivo, BTSK extracts of various concentration (100, $200{\mu}g/ml$) were orally administered to induced hyperlipidemic rats by poloxamer-407 for consecutive four weeks and serum triglyceride, total cholesterol were measured. This method applied to induced hyperlipidemic rats by triton WR-1339, too. Obesity induced rats by the high fat-diet for six weeks were orally administered BTSK extracts of various concentration (100, $200{\mu}g/ml$) and serum triglyceride, total cholesterol, LDL-cholesterol, triglyceride, LDL-cholesterol, triglyceride, HDL-cholesterol, hydroxy radical, superoxide dismuatse activity were measured. Results : I. In vitro 1. The 3T3-L1 cells' differentiation was significantly decreased by BTSK. 2. expression of $C/EBP{\alpha}$ and $PPAR{\gamma}$ was was significantly decreased by BTSK. II. In vitro 1. BTSK significantly reduced serum triglyceride, total cholesterol, contents in poloxamer-407 treated rat. 2. BTSK significantly reduced serum triglyceride, contents in Triton WR-1339 treated rat. But Total cholesterol did not show a significant change. 3. BTSK significantly reduced body weight gain of rat and adipose tissue mass of rats and serum triglyceride, LDL-cholesterol, contents and significantly increased HDL-cholesterol, HTR(HDL-cholesterol/Total-cholesterol) in rats with obesity induced by the high fat-diet. 4. BTSK reduced blood lipid peroxide, hydroxy radical and increased superoxied dismuatse(SOD) activity.

  • PDF

대청룡탕이 지방세포 분화기전에 미치는 영향 (The Effects of Daecheongryong-tang on Transcription Factors and Adipogenic Genes during 3T3-L1 Differentiation)

  • 이준문;조성우;강경화;이승연;유선애
    • 대한한방소아과학회지
    • /
    • 제24권3호
    • /
    • pp.92-105
    • /
    • 2010
  • Objectives: The purpose of this study is to investigate the effects of Daecheongryong-tang (DCRT) on the adipogenesis in 3T3-L1 preadipocytes. Methods: 3T3-L1 preadipocytes were differentiated with adipogenic reagents by incubating for 2 days in the absence or presence of DCRT ranging 0.25 and 2%. The effect of DCRT on adipogenesis was examined by Oil red O staining, and the protein, RNA, and RT-PCR were measured. Results: Our results showed that DCRT decreased the TG content by ORO staining. To elucidate the mechanism of the effects of DCRT on lowering TG content in 3T3-L1 adipocytes, we examined the DCRT modulate expressions of transcription factors to induce adipogenesis and adipogenic genes which is related to the regulation of accumulation of lipids. As a result, the expression of SREBP1, C/$EBP{\beta}$, C/$EBP{\delta}$, C/$EBP{\alpha}$, and $PPAR{\gamma}$ genes, which induce the adipose differentiation and adipose-specific aP2, adipsin, LPL, CD36, TGF-${\beta}$ and adiponectin genes which regulates fat formations, were decreased. In addition, DCRT reduced the expression of iNOS and IL-6 in 3T3-L1 adipocytes, resulting in inflammation. Conclusions: DCRT could regulate transcript factor related to induction of adipose differentiation, inhibit the accumulation of lipids and expression of the adipogenic genes.

3T3-L1 지방전구세포의 지방분화에서 멜라토닌의 영향 (Effect of Melatonin on Differentiating 3T3-L1 Preadipocytes)

  • 이정근;이영훈;김지현
    • 대한의용생체공학회:의공학회지
    • /
    • 제41권3호
    • /
    • pp.138-145
    • /
    • 2020
  • Adipocytes are the main constituent of adipose tissue. Understanding the molecular basis of adipogenesis is pivotal to finding the therapeutic targets for treatment of obesity. Melatonin is associated with obesity and its mechanism is currently under intensive investigation. The objective of this study was to investigate the effect of melatonin on adipogenesis in differentiating preadipocytes. 3T3-L1 preadipocytes were cultured in Dulbecco's modified Eagle's medium (DMEM) containing 5% calf serum at 37℃ with 5% CO2 in a humidified incubator. Differentiation was induced using DMEM with 10% fetal bovine serum supplemented with MDI two days after cell confluence (day 0). Cells were treated with 0, 10 and 100 μM melatonin on either day 0 or day 5. 72 hours after each treatment, lipid accumulation was measured by oil red O staining. Proteins were resolved by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and transferred to membranes. As a result, lipid accumulation decreased with melatonin treatment. ERK pathway, activated when differentiation is induced, also decreased with an increase in melatonin concentration. Furthermore, the expression of key adipogenic factors, C/EBPα, C/EBPβ, and PPARγ, were reduced by melatonin treatment. These results imply that melatonin may inhibit the process of adipogenesis and may have a role as a new anti-obesity agent.

마황천오 약침액이 3T3-L1 지방세포 분화 및 유전자발현에 미치는 영향 (Effects of Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture Solution on Adipocyte Differentiation and Gene Expression in 3T3-L1 Adipocytes)

  • 강경화
    • Korean Journal of Acupuncture
    • /
    • 제31권4호
    • /
    • pp.168-178
    • /
    • 2014
  • Objectives : Mahuang-Chuanwu(Mahwang-Cheonoh) Pharmacopuncture(MCP) has been used to treat obesity in Clinical Korean Medicine. MCP solution(MCPS) is also expected to have strong anti-obesity activities. However, little is known about the mechanisms of its inhibitory effects on adipocyte differentiation and lipogenesis. Methods : In the present study, we examined the effects of MCPS on differentiation and lipogenesis of 3T3-L1 adipocytes. To elucidate the mechanism of the effects of MCPS on lowering lipid content in 3T3-L1 adipocytes, we examined whether MCPS modulates the expressions of transcription factors to induce lipogenesis and adipogenic genes related to regulate the accumulation of lipids. Results : Our results showed that MCPS significantly inhibited differentiation and lipogenesis of 3T3-L1 adipocytes in a dose-dependent manner. MCPS suppressed the mRNA expressions of cytidine-cytidine-adenosine-adenosine-thymidine(CCAAT)/enhancer binding proteins ${\alpha}$($C/EBP{\alpha}$), C/EBP ${\beta}$, $C/EBP{\delta}$, and peroxisome proliferator-activated receptor ${\gamma}$($PPAR{\gamma}$) genes related to the induction of adipose differentiation. MCPS inhibited the mRNA expressions of adipose-specific aP2, adipsin, lipoprotein lipase(LPL), CD36, TGF-${\beta}$, and leptin genes related to the fat formation. MCPS downregulated the mRNA expressions of liver X receptor(LXR) ${\alpha}$ and fatty acid synthase(FAS) genes related to the induction of lipogenesis. In addition, MCPS reduced the production of adipocyte-induced pro-inflammatory cytokines. Conclusions : MCPS could regulate the accumulation of lipids and expression of adipogenic genes via inhibition of transcript factors related to induction of adipose differentiation.

레몬그라스 에탄올 추출물의 3T3-L1 지방세포 분화 억제효과 (Inhibitory Effect of Cymbopogon Citratus Ethanol Extracts on Adipogenesis in 3T3-L1 Preadipocytes)

  • 조용석;주성민;황금희;김민숙;김광상;전병훈
    • 동의생리병리학회지
    • /
    • 제33권1호
    • /
    • pp.17-24
    • /
    • 2019
  • Cymbopogon citratus, commonly know as lemongrass, prossesses strong antioxidant, anti-tumor and anti-inflammatory properties. Howerver, its anti-obesity activity remains to be elucidated. This study investigated the effect of ethanol extract of Cymbopogon citratus on adipogenesis, and its underlying mechanism, in 3T3-L1 preadipocytes. The results demonstrated that ethanol extracts of Cymbopogon citratus effectively suppressed intercellular lipid accumulation at non-toxic concentrations, and was associated with the down-regulation of adipocyte-specific transcription factors, including $C/EBP{\alpha}$ and $PPAR{\gamma}$, and phosphorylation of $AMPK{\alpha}$. Furthermore, ethanol extracts of Cymbopogon citratus increased p21 and p21 expression, while the expression of CDK2, cyclin A and cyclin B1 was reduced. As a result, ethanol extracts of Cymbopogon citratus seems to induce G0/G1 cell cycle arrest of 3T3-L1 cells. On the other hand, ERK and Akt signaling pathways were not involved in anti-adipogenesis by ethanol extracts of Cymbopogon citratus. Taken together, theses results suggest that ethanol extracts of Cymbopogon citratus inhibits adipocyte differentiation in 3T3-L1 cells and can be used as a safe and efficient natural substance to manage anti-obesity.