• Title/Summary/Keyword: 지반 함몰

Search Result 128, Processing Time 0.026 seconds

A Numerical Analysis on the Collapse and Backfill Mechanism of the Abandoned Mine Cavity (폐광의 점진적 파괴 및 뒷채움 효과에 대한 해석적 연구)

  • Lee, Jun-Suk;Bang, C.S.
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.2 no.2
    • /
    • pp.62-71
    • /
    • 2000
  • The abandoned mines causing settlement of the surface above and collapse of the cavities are the major influencing factor on the stability of the nearby underground structures. To prevent the harmful effect, the backfill methods are commonly applied to the cavities although the design criteria and the analysis method are not properly addressed in some cases. An approximate analytical method together with the numerical technique is considered in this study to simulate the gradual deterioration of the rock masses around the cavities and, therefore, the influential zone to the underground structures passing through the cavities. Also considered in this study is the backfill effect on the stability of the rock masses around the cavities. Specifically, the incomplete backfill effect is compared with that of the idealized backfill method by adopting elasto-plastic analysis involving a strain softening material law.

  • PDF

Stability Assessment of Building Foundation over Abandoned Mines (채굴 지역에서의 건축물 기초 지반 안정성 평가 연구)

  • 권광수;박연준
    • Tunnel and Underground Space
    • /
    • v.11 no.2
    • /
    • pp.174-181
    • /
    • 2001
  • The cavities created by underground mining, if remained unfilled, can cause ground settlement and surface subsidence as a result of relaxation and breakdown of the carven roof. Construction of structures above the underground mine cavity will have serious problems concerning both structural stability and safely even if the cavity is back-filled. This study was conducted to confirm the location and condition of the cavern as well as the state of the back-fill in A mine area using core logging and borehole camera. The bearing capacity and other mechanical properties of the ground were also measured by the standard penetration test(SPT). Obtained data were used to assess the stability of the ground and the structures to be built by numerical analysis using FLAC. The site investigation results showed that the mine cavities were filled with materials such as boulder and silty sand(SM by unified classification). Result of the numerical analyses indicated that constructing building structures on the over-lying ground above the filled cavities is secure against the potential problems such as surface subsidence and ground settlement.

  • PDF

Evaluation of Engineering Properties of Retaining Wall Material Using Fiber Reinforcement (섬유보강재를 이용한 흙막이 벽체 재료의 공학적 특성평가)

  • Lee, Jong-Ho;Lee, Kang-Il;Yu, Nam-Jae;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.243-252
    • /
    • 2019
  • Recently, as the utilization of underground space increases, the demand for underground excavation increases. In this study, the concrete mixture with a new material was used to develop and evaluate the stability of the CS-H wall that can greatly minimize the problems of existing wall and minimize the impact of ground depression and surrounding ground that may occur in the future for excavation of over 30 m deep in urban areas. The fiber reinforcement formulation of steel fibers, synthetic fibers, and glass fibers, along with fine aggregate parts of PS-ball and ferronickel, were mixed. The Mixture ratios were determined by conducting slump test compresive strength test, modulus of elastic test, flexural strength test, splitting tensile strength test and conductivity test. As a result of the test, the steel fiber mixture showed very good results compared to other reference values in all items, and it is considered to be the most suitable for the CS-H wall to be developed.

A Study on Simulation of Cavity and Relaxation Zone Using Finite Element Method (유한요소법을 이용한 지반 공동 및 이완영역 모사에 관한 연구)

  • You, Seung-Kyong;Kim, Joo-Bong;Han, Jung-Geun;Hong, Gi-Gwon;Yun, Jung-Mann;Lee, Kang-Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.67-74
    • /
    • 2017
  • In order to prevent the ground subsidence accidents caused by the occurrence of underground cavity, it is necessary to evaluate the mechanical characteristics in the relaxation zone of the underground cavity. Also, the relaxation zone including underground cavity be appropriately reinforced. This paper described analysis results based on finite element method that was conducted to analyze the mechanism for occurrence of the relaxation zone around the underground cavity. The finite element analysis applied in forced displacement was carried out to simulate the underground cavity and relaxation zone, and then there were compared with previous research results. The analysis results showed that the void distribution of soil around the underground cavity has figured out. As a result, the area of the relaxation zone could be quantitatively presented by reduction characteristics of the shear stress.

A Case Study of Ground Subsidence in a Groundwater-saturated Limestone Mine (지하수로 포화된 석회석광산의 지반침하 사례연구)

  • Choi, Woo-Seok;Kim, Eun-Sup;Kang, Byung-Chun;Shin, Dong-Choon;Kim, Soo-Lo;Baek, Seung-Han
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.511-524
    • /
    • 2015
  • Groundwater causing subsidence in limestone mines is uncommon, and thus relatively poorly investigated. This case study investigated the cause and possibility of future subsidence through an evaluation of ground stability at the Samsung limestone mine, Chungcheongbuk-do. The ground near the mine area was evaluated as unstable due to rainfall permeation, and subsidence in the unmined area resulted from groundwater level drawdown. Future subsidence might occur through the diffusion of subsidence resulting from the small thickness of the mined rock roof, fracture rock joints, and poor ground conditions around the mine. In addition, the risk of additional subsidence by limestone sinkage in corrosion cavities, groundwater level drawdown due to artificial pumping, and rainfall permeation in the limestone zone necessitates reinforcements and other preventative measures.

Analysis on Surface Collapse of the Road NATM Tunnel through the Weathered Rock (풍화대를 통과하는 도로 NATM 터널의 천단부 함몰에 대한 연구)

  • Shin, Eun-Chul;Yoo, Jai-Sung
    • Journal of the Korean Geosynthetics Society
    • /
    • v.15 no.2
    • /
    • pp.55-64
    • /
    • 2016
  • The construction of the road NATM tunnel, which undergoes the weathered zone of the mountain, was in process with the reinforcement methods such as the rock bolt, shotcrete depositing, and the multi step grout with large diameter steel pipe. The collapse from the ceiling, and on the ground surface area(sink hole), of which were measured to be 25m from the ground surface($V=12m(W){\times}14m(L){\times}5m(H)=840m^3$), as well as excessive displacements in the tunnel, had occurred. In order to execute the necessary reconstruction work, the causes of the surface collapses were inspected through the field investigation, in-situ tests, and numerical analysis. As a result, several proper solutions were suggested for both internal and external reinforcements for the tunnel. As a result of numerical analysis, the collapsed zone of the tunnel was reinforced up to 0.5D~1.0D laterally by the cement grouting on the ground surface, 0.5D longitudinally by the multi step grout with large diameter steel pipe in tunnel. With further reinforcement implemented by rebars in lining, the forward horizontal boring was executed to the rest of the tunnel to evaluate the overall status of the tunnel face. Appropriate reinforcement methods were provided if needed.

A Study on the Open Cut Restoration of Underground Cavity Using Concrete Mat (콘크리트매트를 이용한 개착식 지반공동 복구방법에 관한 연구)

  • Park, Jeong-Jun;Shin, Heesoo;Chung, Yoonseok;You, Seung-Kyong;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.1
    • /
    • pp.55-65
    • /
    • 2019
  • This paper describes results of experimental and numerical analyses, in order to analyze a reinforcement effect of concrete mat on open cut restoration of underground cavity. The plate loading tests were conducted to evaluate a reinforcement effect of concrete mat, at reinforcement depths from the ground surface of 10 cm, 20 cm, and 30 cm. The result showed that the reduction ratio of stress (earth pressure) was about 60% at all reinforcement depth. The reinforcement effect considering ground surface settlement and reduction ratio of stress based on laboratory tests and numerical analysis was significant, at reinforcement depths from the ground surface of 10 cm~20 cm. LFWD test results showed that subgrade modulus was the largest when concrete mat was installed 20 cm below ground surface. Therefore, it is effective to reinforce concrete mat within 20 cm from the surface, when the underground cavity due to damage of underground utilities was formed in the height direction to the bottom of the pavement layer.

Precision Improvement Methodology of Geotechnical Information through Outlier Analysis (이상치 분석을 통한 3차원 지반정보 정밀도 향상 방안)

  • Lee, Boyoung;Hwang, Bumsik;Kim, Hansaem;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.2
    • /
    • pp.23-35
    • /
    • 2018
  • Recently, ground disasters such as road collapses and cavities have been frequently occurred in Seoul and downtown areas. As a result, studies on the integrated underground space map is underway as a government's solution. On the other hand, the geotechnical information underlying the integrated underground space map has been being built with more than 220 thousands borehole DB informations through the Integrated DB Center of National Geotechnical Information. To build a three-dimensional integrated underground space map based on the geotechnical information, the reliability of the geotechnical information should be verified by analyzing and evaluating the precision of the geotechnical information. Thereby, studies were conducted on the precision verification and evaluation of the constructed geotechnical information. Thereafter, it has been reviewed how to utilize geotechnical information in addition to analyzing the precision of the geotechnical information in order to visualize three dimensions in geotechnical information. As a further step to the practical DB application, a module is suggested in this study to improve the precision of geotechnical information for establishing reliable three dimensional integrated underground space maps based on the previous research results.

Mechanical Property Enhancement of Water Soluble Polymer Pouch for Ground Reinforcement (지반함몰 긴급복구용 수용성 폴리머 파우치의 기계적 물성강화)

  • Jung, Dongho;Chung, Dasom;You, Seung-Kyong;Kim, Joo-Hyun;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.4
    • /
    • pp.221-230
    • /
    • 2017
  • We developed a polymer pouch using PVP that is water soluble in the precedent study. Yet melt viscosity was so low that it was not possible to produce hemispheric type which is essential for mass production, therefore we used another material to make the polymer pouch. It enabled to figure out a water-soluble transition and mechanic physical property of PEG that is newly chosen, and to blend the PEG with LLDPE and TALC followed by result. So, we could implement an evaluating property on blended proportion. It is important to find out a proper blending ratio throughout an experiment since its property is different or varied followed by each proportion as a water soluble character is conflict to a solid character. With the blending technique we were able to produce the polymer pouch enhanced for a tensile force and an impact intensity maintaining a water soluble character. We could identify a ground solidity effect of the polymer pouch as a result of a direct shear test using the product developed.

A Study on Expansion and Strength Characteristics of Material for Emergency Restoration in Ground Cavity (지반공동 긴급복구 재료의 팽창 및 강도특성에 관한 연구)

  • Han, Jin-Gyu;Ryu, Yong-Sun;Kim, Dongwook;Park, Jeong-Jun;Hong, Gigwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.131-138
    • /
    • 2017
  • In this study, the expansion and compressive strength tests of emergency restoration material were carried out to restore cavity causing ground subsidence. The expansion and compressive strength characteristics according to component ratio of main material - hardener and mix proportion of blowing agent - accelerator were analyzed based on the test results. As a result of the relationship of curing time - expansion ratio analyses, it confirmed that expansion ratio decreased with reduced curing time regardless of mix proportion of blowing agent - accelerator in main material, if component ratio of hardener increased. This means that component ratio of the main material - hardener had greatly affected the expansion ratio. The compressive strength characteristics of emergency restoration material confirmed that strength was affected by mix proportion of blowing agent - accelerator. Therefore, it is necessary to apply reasonable component ratio and mix proportion to consider the required injection time, expansion ratio and strength of restoration material, when emergency restoration in ground cavity is required.