• Title/Summary/Keyword: 지반 굴착

Search Result 1,168, Processing Time 0.026 seconds

A Study on the Upper Ground Reinforcement Effect in Underground Cavern (지하공동 상부지층 보강효과에 관한 연구)

  • Kim, Ki Ho;Lim, Jong Se;Jang, Won Yil
    • Tunnel and Underground Space
    • /
    • v.25 no.3
    • /
    • pp.275-283
    • /
    • 2015
  • Excavation of underground space in soft ground implicate to the structure, such as subsidence. As a result, it has been acting as a serious risk to the stability of the roads and facilities. Therefore, in order to stabilize the soil stabilization and reinforcement of the structure, we have been using a number of methods and injecting material. In this study, we compared and analyzed the amount of subsidence regarding the ground reinforcement during underground excavation in soft ground by performing model test. And three-dimensional numerical analysis was performed using FLAC 3D. The subsidence was simulated numerically according to the tunnel excavation. The subsidence results of the model tests and numerical analyzes were relatively consistent. Thus comparing the ground subsidence by varying the reinforcement area on the numerical analysis was analyzed. As a results, three-dimensional numerical simulation could be regarded to simulate better on the ground subsidence by various kinds of underground excavation and it can be used as a material of subsidence prevention methods.

Investigation on Tunneling and Groundwater Interaction Using a 3D Stress-pore Pressure Coupled Analysis (응력-간극수압 3차원 연계해석을 통한 터널굴착과 지하수의 상호작용 고찰)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.3
    • /
    • pp.33-46
    • /
    • 2004
  • This paper presents the effect of groundwater on tunnel excavation. Fundamental issues in tunneling under high groundwater table are discussed and the effect of groundwater on tunnel excavation was examined using a 3D stress-pore pressure coupled finite-element analysis. Based on the results the interaction mechanism between the tunnelling and groundwater is identified for cases having different lining permeabilities. Examined items include pore pressures around lining and lining stresses. Face deformation behavior as well as ground surface movement patterns was also examined. Besides, the effect of grouting pattern was investigated. The results indicated that the effect of groundwater on tunnel excavation increases lining stresses as well as ground movements, and that the tunnel excavation and groundwater interaction can only be captured through a fully coupled analysis. Implementations of the findings from this study are discussed in great detail.

Performance of Innovative Prestressed Support Earth Retention System in Urban Excavation (도심지 굴착에 적용된 IPS 흙막이 구조물의 현장거동)

  • Kim Nak Kyung;Park Jong Sik;Jang Ho Joon;Han Man Yop;Kim Moon Young;Kim Sung Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.27-36
    • /
    • 2005
  • The performance of innovative prestressed support (IPS) earth retention system applied in urban excavation was presented and investigated. The IPS wales provide a high flexural stiffness to resist the bending by lateral earth pressure, and the IPS wales transfer lateral earth pressure to Corner struts. The IPS wale provides a larger spacing of support, economical benefit, construction easiness, good performance, and safety control. In order to investigate applicability and stability of the IPS earth retention system, the IPS system was instrumented and was monitored during construction. The IPS system applied in urban excavation functioned successfully. The results of the field instrumentation were presented. The measured performances of the IPS earth retention system were investigated and discussed.

A Study on the Dynamic Effect Influencing to Urban Railway Structures by Vibration from Near-field Excavating Work (근접장 굴착진동이 도시철도 구조물에 미치는 동적영향 연구)

  • Woo-Jin, Han;Seung-Ju, Jang;Sang-Soo, Bae;Seung-Yup, Jang;Myung-Seok, Bang
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.41-53
    • /
    • 2022
  • In the excavation work like blasting/excavator work bordering on the urban railway, the dynamic safety of railway structures like tunnel, open-cut box structure and elevated bridge was investigated by numerical analysis in this study. The practically presented criteria on influential zones at the blasting work in the construction industry was numerically checked in cases of the precise vibration-controlled blasting (type II) and the small scale vibration-controlled blasting (type III) and it was shown that the criteria on blasting work methods needed to be supplemented through continuous field tests and numerical analyses. The influence of excavation vibration by mechanical excavators was especially investigated in case of earth auger and breaker. The numerical analysis of tunnel shows that the criteria on vibration velocities from the regression analysis of field test values was conservative. The amplification phenomenon of excavating vibration velocity was shown passing through the backfilling soil between the earth auger and the open-cut box structure. It was shown that the added-vibration on the superstructure of elevated bridge was occurred at the bottom of pile like earthquake when the excavator vibration was arriving at the pile toe. The systematic and continuous research on the vibration effect from excavating works was needed for the safety of urban railway structures and nearby facilities.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Damage Analysis of Nearby Structures with the Consideration of Tunnel Construction Conditions in Sandy and Clayey Ground (모래 및 점토지반에서 터널시공조건을 고려한 인접구조물의 손상도 분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1C
    • /
    • pp.53-63
    • /
    • 2011
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different ground (loose sand, dense sand, soft clay, stiff clay) and construction conditions (ground loss). The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different ground and construction conditions (ground loss) using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of ground and construction conditions (ground loss) considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of ground and construction conditions (ground loss) using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

Response Analysis of Nearby Structures with the Consideration of Tunnel Construction and Ground Conditions (터널시공 및 지반조건을 반영한 인접구조물의 거동분석)

  • Son, Moorak;Yun, Jongcheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6C
    • /
    • pp.255-263
    • /
    • 2010
  • This paper investigates the effects of tunnelling-induced ground movements on nearby structures, considering soil-structure interactions of different construction (ground loss) and soil characteristics. The response of four-story block structures, which are subjected to tunnelling-induced ground movements, has been investigated in different construction (ground loss) and soil conditions using numerical analysis. The structures for numerical analysis has been modelled using Discrete Element Method (DEM) to have real cracks when the shear and tensile stress exceed the maximum shear and tensile strength. The response of four-story block structures has been investigated with a ground movement magnitude and compared in terms of construction (ground loss) and soil conditions considering the magnitude of deformations and cracks in structures. In addition, the damage levels, which are possibly induced in structures, has been provided in terms of construction (ground loss) and soil conditions using the state of strain damage estimation criterion (Son and Cording, 2005). The results of this study will provide a background for better understandings for controlling and minimizing building damage on nearby structures due to tunnelling-induced ground movements.

A Design Method of Earth-Retaining Structure Constructed by a Row of Bored Piles in Cohesive Soils (점성토지반속 주열식 흙막이벽의 설계법)

  • Hong, Won-Pyo;Gwon, U-Yong;Go, Jeong-Sang
    • Geotechnical Engineering
    • /
    • v.5 no.3
    • /
    • pp.29-38
    • /
    • 1989
  • A design method is presented for the earth-retaining structure ccnslructtd by a row of bored Piles, which has such merits as low-vibration and low-noire during construction. And utility of the design method is investigated by performing a design example. First, theoretical rquations to estimate the resisting force of a row of earth-retaining was in cohesive soils are estabilished for grounds above and below bottom of excavation, reprctively. The characteristics of soils and the effect pile's interval can be considered logically in the theoretical equations. Then, the method for stability.analysis is presented for the earth-retaining piles by applying the theoretical equation of resisting forces on a row of piles. Finally, the design of earth-retaining piles is performed within the ranges which can satisfy the stabilities of both piles and soils. On investigation cf the sail-stability, the stability for bottom heave In cohesive soils is also investigated.

  • PDF

A Numerical Analysis on Ground Deformation due to Tunnel Excavation : Case Study of Seoul Subway NATM Tunnel (터널 굴착에 따른 지반 변형 수치해석 : 서울 지하철 NATM 터널 해석 사례 연구)

  • 손준익;이원제
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.133-151
    • /
    • 1991
  • In this paper an analytic discussion was made for a finite element analysis performed for the case study of Seoul subway NATM tunnel. The effects mainly discussed on the ground deformation analysis were the staged tunnel excavation and the excavated distance from a tunnel facing. The concept of ground characteristic line has been applied to properly consider the loading condition given by staged tunnel excavation so that the imaginary supporting pressure is applied on the excavated tunnel face. Discussions on the results of the performed finite element analysis were mainly made with respect to the ground settlement, tunnel displacement, earth pressure, stress mobilized in supporting members. And the three dimensional supporting effect due to the tunnel facing was evaluated based on an elastic closed-form solution and a result of two dimensional axisymmetric finite element analysis.

  • PDF

Finite Element Method for the Analysis of Deep Excavation in Urban Environment (도심지 굴착에 따른 토류구조물 및 인접지반의 유한요소 해석기법)

  • Lee, Bong-Ryeol;Kim, Gwang-Jin;Kim, Hak-Mun
    • Geotechnical Engineering
    • /
    • v.13 no.5
    • /
    • pp.35-44
    • /
    • 1997
  • A finite element computer program is developed for the specific analysis of earth retaining structures in urban excavation. Unlike the existing multi -purpose FEM programs, the newly developed program (EM) consists of very simple and easy data processing system for the urban excavation. A non-linear material model(GDHM, Generalized Decoupled Hyperbolic Models is deviloped and implemented in the program EM. The results of large scale model tests for earth retaining structures are used for the vertification of EM along whit GDHM, and the results were satisfactory, but it was found that the program EM needs minor modification for the improvement of its accuracy.

  • PDF