• Title/Summary/Keyword: 지반 굴착

Search Result 1,176, Processing Time 0.025 seconds

The Study on the Design and Numerical Analysis of Self-Supported Retaining Wall with Cement Treated Soil by Vertical Mixing Method(V-DCM) (연직교반혼합처리(V-DCM) 연속벽을 이용한 자립식 흙막이공법의 설계 및 해석에 관한 연구)

  • Byung-Il Kim;Kang-Han Hong;Young-Seon Kim;Jin-Hae Kim;Sang-Jae Han
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.9-23
    • /
    • 2023
  • In this study, the design methods of self-supported retaining wall with cement treated soil constructed by vertical mixing method (trencher mixing method, V-DCM), which are using in domestic and foreign field, are investigated, and the characteristics of it are presented with comparing the results of numerical analysis with the drainage and construction conditions. The results indicated that the method 1 (total stress analysis) is the most aggressive, and method 2 (effective stress analysis) and method 3 are similar in the internal stress, and the stress and the horizontal displacement are effected on the soil type and drainage conditions in backfill of the wall. Also, in the case of the design combined with numerical analysis the method 1 can be applied, in that of the traditional design without the analysis the method 2 or the method 3 can be used. Finally, if the numerical analysis is only conduct, the tensile stress in excavation base and in boundary of the wall and the original ground have to be considered in the numerical analysis method.

Prediction of the Damage Zone Induced by Rock Blasting Using a Radial Crack Model (방사균열 모델을 적용한 암반 발파에 의한 손상 영역 예측)

  • Sim, Young-Jong;Cho, Gye-Chun;Kim, Hong-Taek
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.11
    • /
    • pp.55-64
    • /
    • 2006
  • It is very Important to predict the damage zone of a rock mass induced by blasting for the excavation of an underground cavity such as a tunnel, as the damage zones incur mechanical and hydraulic instability of the rock mass potentially. Complicated blasting processes that can hinder the proper characterization of the damage zone can be effectively represented by two loading mechanisms. The first mechanism is the dynamic impulsive load-generating stress waves that radiate outwards immediately after detonation. This load creates a crushed annulus along with cracks around the blasthole. The second is the gas pressure that remains for an extended time after detonation. As the gas pressure reopens some arrested cracks and extends these, it contributes to the final structure of the damage zone induced by the blasting. This paper presents a simple method to evaluate the damage zone induced by gas pressure during rock blasting. The damage zone is characterized by analyzing crack propagations from the blasthole. To do this, a model of a blasthole with a number of radial cracks that are equal in length in a homogeneous infinite elastic plane is considered. In this model, crack propagation is simulated through the use of only two conditions: a crack propagation criterion and the mass conservation of the gas. The results show that the stress intensity factor of a crack decreases as the crack propagates from the blasthole, which determines the crack length. In addition, it was found that the blasthole pressure continues to decrease during crack propagation.

Nonlinear Seismic Performance Evaluation of an Operating TBM(Tunnel Boring Machine) Tunnel (공용 중인 TBM(Tunnel Boring Machine) 터널의 비선형 내진성능 평가 )

  • Byoung-Il Choi;Dong-Ha Lee;Jin-Woo Jung;Si-Hyun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.5
    • /
    • pp.1-9
    • /
    • 2024
  • Recently, the TBM tunnel construction method has been in the spotlight as tunnel excavation under urban areas such as the Metropolitan Rapid Transit (GTX) has been actively carried out. Although the construction cost of the TBM tunnel is high, it is relatively free from noise and vibration compared to the NATM tunnel method, so it is well known to be a suitable construction method for application to the lower part of urban areas. In particular, when the stratum passes through the shallow section, it can have a great impact on existing upper structures and obstacles, so accurate numerical analysis considering various variables is required when designing the TBM tunnel. Unlike other tunnel construction methods, TBM tunnels build linings by assembling factory-made segments. Unlike NATM tunnels, segment lining has connections between segments, so how to the connection status between segments is reflected can have a significant impact on securing the reliability of analysis results. Therefore, in this paper, a segment joint model(Janssen Model) was applied to the lining for seismic analysis of the TBM tunnel, and the tunnel's behavioral characteristics were analyzed after numerical analysis using nonlinear models according to urban railway seismic design standards.

Analysis of the influence of existing parallel tunnels according to the location of the new tunnel (신설터널의 위치에 따른 기존 병렬터널의 영향 분석)

  • Yun, Ji-Seok;Kim, Han-Eol;Nam, Kyoung-Min;Jung, Ye-Rim;Cho, Jae-Eun;Yoo, Han-Kyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.24 no.2
    • /
    • pp.193-215
    • /
    • 2022
  • Recently, ground structures have reached saturation, and underground construction using underground structures such as tunnels has been in the spotlight as a way to solve increasing traffic difficulties and environmental problems. However, due to the increasing number of underground structures, close construction is inevitable for continuous underground development. When a new underground structure is constructed closely, stability may become weak due to the influence on the existing tunnel, which may cause collapse. Therefore, analyzing the stability of existing tunnels due to new structures is an essential consideration. In this study, the effect of excavating new tunnels under parallel tunnels on existing parallel tunnels was analyzed using numerical analysis. Using the Displacement Control Model (DCM), the volume loss generated during construction was simulated into three case (0.5%, 1.0%, and 1.5%). Based on the center of the pillar, the distance where the new tunnel is located was set to 5 m, 6 m, 7 m, 8 m, 9 m, and the space for each distance were set to 5 (0D1, 0.37D1, 0.75D1, 1.13D1, 1.5D1). In general, as the volume loss increased and the distance approached, the maximum displacement and angular displacement increased, and the strength/stress ratio to evaluate the stability of the pillar also decreased. As a result, when the distance between the new tunnel and the center of the pillar is 5 m, the space is 0D1, and the volume loss is 1.5%, the stability of the existing parallel tunnel is the weakest.

Effect of pore-water salinity on freezing rate in application of rapid artificial ground freezing to deep subsea tunnel: concentration of laboratory freezing chamber test (고수압 해저터널에 급속 인공동결공법 적용시 간극수의 염분 농도가 동결속도에 미치는 영향 평가: 실내 동결챔버시험 위주로)

  • Oh, Mintaek;Lee, Dongseop;Son, Young-Jin;Lee, In-Mo;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.5
    • /
    • pp.401-412
    • /
    • 2016
  • It is extremely difficult to apply conventional grouting methods to subsea tunnelling construction in the high water pressure condition. In such a condition, the rapid artificial freezing method can be an alternative to grouting to form a watertight zone around freezing pipes. For a proper design of the artificial freezing method, the influence of salinity on the freezing process has to be considered. However, there are few domestic tunnel construction that adopted the artificial freezing method, and influential factors on the freezing of the soil are not clearly identified. In this paper, a series of laboratory experiments were performed to identify the physical characteristics of frozen soil. Thermal conductivity of the frozen and unfrozen soil samples was measured through the thermal sensor adopting transient hot-wire method. Moreover, a lab-scale freezing chamber was devised to simulate freezing process of silica sand with consideration of the salinity of pore-water. The temperature in the silica sand sample was measured during the freezing process to evaluate the effect of pore-water salinity on the frozen rate that is one of the key parameters in designing the artificial freezing method in subsea tunnelling. In case of unfrozen soil, the soil samples saturated with fresh water (salinity of 0%) and brine water (salinity of 3.5%) showed a similar value of thermal conductivity. However, the frozen soil sample saturated with brine water led to the thermal conductivity notably higher than that of fresh water, which corresponds to the fact that the freezing rate of brine water was greater than that of fresh water in the freezing chamber test.

Acid Drainage and Damage Reduction Strategy in Construction Site: An Introduction (건설현장 산성배수의 발생현황 및 피해저감대책)

  • Kim, Jae-Gon
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.651-660
    • /
    • 2007
  • Acid drainage has been recognized as an environmental concern in abandoned mine sites for long time. Recently, the environmental and structural damage by acid drainage is a current issue in construction sites in Korea. Here, the author introduces the type of damages by acid drainage in construction sites and emphasizes the importance of geoscience discipline in solving the problem. Metasedimentary rock of Okcheon group, coal bed of Pyeongan group, Mesozoic volcanic rock. and Tertiary sedimentary and volcanic rocks are the major rock types with a high potential for acid drainage upon excavation in Korea. The acid drainage causes the acidification and heavy metal contamination of soil, surface water and groundwater, the reduction of slope stability, the corrosion of slope structure, the damage on plant growth, the damage on landscape and the deterioration of concrete and asphalt pavement. The countermeasure for acid drainage is the treatment of acid drainage and the prevention of acid drainage. The treatment of acid drainage can be classified into active and passive treatments depending on the degree of natural process in the treatment. Removal of oxidants, reduction of oxidant generation and encapsulation of sulfide are employed for the prevention of acid drainage generation.

Development of a TBM Advance Rate Model and Its Field Application Based on Full-Scale Shield TBM Tunneling Tests in 70 MPa of Artificial Rock Mass (70 MPa급 인공암반 내 실대형 쉴드TBM 굴진실험을 통한 굴진율 모델 및 활용방안 제안)

  • Kim, Jungjoo;Kim, Kyoungyul;Ryu, Heehwan;Hwan, Jung Ju;Hong, Sungyun;Jo, Seonah;Bae, Dusan
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.305-313
    • /
    • 2020
  • The use of cable tunnels for electric power transmission as well as their construction in difficult conditions such as in subsea terrains and large overburden areas has increased. So, in order to efficiently operate the small diameter shield TBM (Tunnel Boring Machine), the estimation of advance rate and development of a design model is necessary. However, due to limited scope of survey and face mapping, it is very difficult to match the rock mass characteristics and TBM operational data in order to achieve their mutual relationships and to develop an advance rate model. Also, the working mechanism of previously utilized linear cutting machine is slightly different than the real excavation mechanism owing to the penetration of a number of disc cutters taking place at the same time in the rock mass in conjunction with rotation of the cutterhead. So, in order to suggest the advance rate and machine design models for small diameter TBMs, an EPB (Earth Pressure Balance) shield TBM having 3.54 m diameter cutterhead was manufactured and 19 cases of full-scale tunneling tests were performed each in 87.5 ㎥ volume of artificial rock mass. The relationships between advance rate and machine data were effectively analyzed by performing the tests in homogeneous rock mass with 70 MPa uniaxial compressive strength according to the TBM operational parameters such as thrust force and RPM of cutterhead. The utilization of the recorded penetration depth and torque values in the development of models is more accurate and realistic since they were derived through real excavation mechanism. The relationships between normal force on single disc cutter and penetration depth as well as between normal force and rolling force were suggested in this study. The prediction of advance rate and design of TBM can be performed in rock mass having 70 MPa strength using these relationships. An effort was made to improve the application of the developed model by applying the FPI (Field Penetration Index) concept which can overcome the limitation of 100% RQD (Rock Quality Designation) in artificial rock mass.

A re-appraisal of scoring items in state assessment of NATM tunnel considering influencing factors causing longitudinal cracks (종방향균열 영향인자 분석을 통한 NATM터널 정밀안전진단 상태평가 항목의 재검토)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • State assessment of an operational tunnel is usually done by performing visual inspection and durability tests by following the detailed guideline for safety inspection (SI) and/ or precision inspection for safety and diagnosis (PISD). In this study, 12 NATM tunnels, which have been operational for more than 10 years, were inspected to figure out the cause of longitudinal cracks for the purpose of modifying the scoring items in the state assessment NATM tunnel related to the longitudinal crack and the thickness of concrete lining. All investigated tunnels were classified into four groups depending on the shape and usage of each tunnel. The causes of longitudinal crack occurrence were analyzed by investigating the correlations between the longitudinal crack and the following four factors: the patterns of ground excavation; construction state of primary support system; characteristics of material properties of the concrete lining; and thickness of lining which was obtained by Ground Penetration Radar (GPR) tests. It was found that influencing factors causing longitudinal cracks in the lining were closely related with the construction condition of the primary support system, i.e. shotcrete, rockbolt, and steel-rib; crack occurrences were not much affected by the excavation patterns. As for the properties of concrete lining materials, occurrence of the longitudinal crack was mostly affected by the following three items: w/c ratio; contents of cement; and strength of lining. When estimating the lining thickness of the concrete lining by GPR tests and taking thickness effect into account in the statement assessment, it was concluded that increase of the index score by an average of 0.03 (ranging from 0.01 up to 0.071) is needed; a more realistic way of state assessment should be proposed in which the increased index score caused by lack of lining thickness should be taken into account.

Characterizing Hamangun Dohangri 6th Tumulus Using Ground Survey (지반조사에 의한 함안군 도항리 6호 고분 특성 규명)

  • Lee, Hyun-Jae;Hamm, Se-Yeong;Park, Samgyu;Lee, Chung-Mo;Oh, Yun-Yeong;Liang, Wei Ming
    • Economic and Environmental Geology
    • /
    • v.48 no.4
    • /
    • pp.351-360
    • /
    • 2015
  • Hamangun Dohangri $6^{th}$ tumulus was characterized by using geological, geophysical, and geotechnical surveys in terms of the shape of the tombs, origin and geotechnical properties of tomb materials, safety of grave mound and burial chamber. The bedrock (Haman Formation sedimentary rock) forming the ground of the tomb, is weathered such that men can excavate the ground. The mound tomb is classified into soil part and rock part by low resistivity and high resistivity, respectively, through electrical resistivity survey. The burial chamber is mostly made by Haman Formation while some part is composed of granitic rock that is distributed in the most southern district of the study area. According to soil tests, the soil part of mound tomb shows low water content, low pore ratio, and proper unit weight that indicate highly compacted material. Additionally, the mound tomb is safe because the strength of the rock part of the mound tomb exceeds that of general rock.

An Experimental Study on the Optimum Mix Design and Site Application Case of Soil Mixing Wall for Trench Stability (구벽안정성을 위한 SMW 최적배합비 및 현장적용 사례에 관한 연구)

  • Kwon, Yeong-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.4
    • /
    • pp.419-426
    • /
    • 2015
  • The purpose of this study is to investigate experimentally the optimum mix design and site application case of soil mixing wall (SMW) method which is cost-effective technique for construction of walls for cutoff wall and excavation support as well as for ground improvement before constructing LNG storage tank typed under-ground. Considering native soil condition in site, main materials are selected ordinary portland cement, bentonite as a binder slurry and also it is applied $1,833kg/m^3$ as an unit volume weight of native soil, Variations for soil mixing wall are as followings ; (1) water-cement ratio 4cases (2) mixing velocity (rpm) 3levels (3) bleeding capacity and ratio, compressive strength in laboratory and site application test. As test results, bleeding capacity and ratio are decreased in case of decreasing water-cement ratio and increasing mixing velocity. Required compressive strength (1.5 MPa) considering safety factors in site is satisfied with the range of water-cement ratio 150% below, and test results of core strength are higher than those of specimen strength in the range of 8~23% by actual application of element members including outside and inside in site construction work. Therefore, optimum mix design of soil mixing wall is proposed in the range of unit cement $280kg/m^3$, unit bentonite $10kg/m^3$, water-cement ratio 150% and mixing velocity 90rpm and test results of site application case are satisfied with the required properties.