• Title/Summary/Keyword: 지반특성 효과

Search Result 688, Processing Time 0.025 seconds

Evaluation of Influence Bounds of the Soil for Soil-Footing Interaction System considering Damping Effect of the Soil (지반의 감쇠효과를 고려한 지반-기초 상호작용계에 대한 지반의 영향범위 산정)

  • 장병순;서상근;최태환
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.281-292
    • /
    • 1999
  • 지반-기초 상호작용계를 해석할 때 실제로 지반은 다양한 지반종류와 다층으로 형성되어 있으므로 지반 특성의 변화를 고려해야 한다. 초기의 대부분의 상호작용계의 정·동적 해석은 지반의 복잡한 성질을 역학적으로 탄성거동을 한다고 가정한 Winkler 지반모델 혹은 지반을 등방성이고 균질한 반무한 탄성체로 가정한 반무한 탄성지반 모델로 보아 수행되었다. 본 연구는 유한 요소법을 이용하여 지반-기초 상호작용계의 동적 거동을 해석하기 위해 기초는 4절점 후판요소를 사용하고 지반은 지반특성을 고려할 수 있도록 8절점 6면체 요소를 사용하였고, 지반의 감쇠효과 및 지반특성을 고려한 지반-기초 상호작용계의 동적 거동을 유한요소법으로 해석하고 지반의 영향범위를 결정하는 것이다.

  • PDF

Evaluation of Design Parameters of Grouting Nail (그라우팅 네일을 이용한 사면보강공법의 설계인자 추출 연구)

  • 황영철;김낙영;석정우
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.44-58
    • /
    • 2001
  • FRP(Fiberglass Reinforced Plastic)관을 이용한 사면보강은 천공 후 그라우트재에 압력을 가하여 그라우트재의 천공홀 충전뿐만 아니라 지반으로의 침투주입 효과를 일으켜, 전체적인 보강력 증대를 기대하는 공법이다. 이런 특성을 설계에 반영하기 위해서는 구조재료인 FRP관 자체에 의한 지반보강효과 뿐만 아니라 그라우팅에 따른 지반강도의 증진효과를 정량적으로 평가하는 것이 선행되어야 하나 아직까지는 이에 대한 연구가 부족한 실정이다. 따라서 대상지반을 토사와 암반사면으로 구분하여 각각의 보강효과를 확인하고자 현장시험 및 수치해석을 실시하였으며, 이로부터 지반종류에 따른 보강특성과 합리적인 설계를 위한 설계인자를 추출하고자 하였다.

  • PDF

Material Characteristics and Field Tests of FRP Reinforcing Members (FRP 보강재의 역학적 특성 및 현장시험 결과분석)

  • 석정우;김장용;김명모
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10b
    • /
    • pp.31-42
    • /
    • 2001
  • 다양한 방식으로 제작된 유리섬유 강화 플라스틱관(FRP pipe)의 인장 및 휨강도 시험 결과로부터 제작방식에 따른 FRP관의 강도 특성을 비교 검토하였다. 또한, 사면보강대책으로서 FRP 그라우팅 공법의 현장 적용성을 평가하기 위하여, FRP 그라우팅에 따른 지반강도의 증진효과 및 보강재의 인발저항력을 산정하였다. 이를 위하여, 지반의 상대밀도 및 구속압에 따른 보강재 인발저항력의 변화 및 압력주입에 의한 확공효과 평가를 위하여 실내모형실험이 이루어졌다. 또한, FRP 그라우팅이 시공된 현장에서 공내재하시험, 투수시험, 그리고 시추공전단시험 등을 실시하여 FRP 그라우팅에 의한 지반보강 효과 및 차수효과를 정량적으로 산정하였다.

  • PDF

Study on Application of Wave Travelling Effect and Local Site Effect to Design Standard for Analysing Seismic Behavior of Long-Span Cable-Stayed Bridge (장대사장교의 지진거동 분석시 지반특성 및 파동전달효과를 고려한 설계기준 적용에 대한 고찰)

  • Park, Youn-Soo;Song, Young-Bong;Hyun, Ki-Hwyun;Lee, Soon Nam;Yang, Won Yeol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.167-174
    • /
    • 2008
  • Number of long-span bridge construction has been increased recently so that seismic consideration of design has become significant. To adapt such significance to design, seismic design in the newly revised 'Cable Steel Bridge Design Handbook' specifies some of wave travelling effect and local site effect. In this study, a cable-stayed bridge with main span of 500m is analysed having variables of uniform excitation, wave travelling effect, and wave travelling effect plus local site effect. Result shows that wave travelling effect in cable-stayed bridge affects considerably to its seismic response under weak soil condition even though the span length is relatively short. What's more, regardless of soil type, the seismic response has become higher for analysis with wave travelling effect and local site effect than with wave travelling effect only. Consequently, in seismic response analysis of long-span bridge, consideration should be given to application of wave travelling effect and local site effect.

Improvement Effects of Soft Clay Soils Using Quick Lime Piles (생석회 말뚝을 이용한 연약점토지반의 개량효과)

  • Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.45-51
    • /
    • 2010
  • This study is to evaluate an application of technology to the soft ground stability using quick lime pile in the field. We investigated properties of Korean quick lime by conducting loading test and theoretical consideration about a principle and property of soft ground improvement by quicklime. According to the test results, it was estimated that quick lime pile method has dehydration effect by absorption of quick lime, consolidation effect by swelling of pile, increasing bearing by strength of pile itself and decreasing sinking effect, etc. A material property of quick lime is favorable for construction and considerable strength. In the case of higher strength is required, using cement as additive would increase material strength.

Settlement Restraint of Soft Ground by Low Slump Mortar Injection (저유동설 몰탈주입에 의한 연약지반의 침하억제 효과)

  • 천병식;여유현;정영교
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.53-67
    • /
    • 2001
  • In this study the pilot test of CGS as injection method by low slump mortar was performed and the results were analyzed in order to find out the application of this method and effect of settlement restraint. The site far pilot test is adjacent to apartments supported by pile foundations. Sand drain method was performed previously as countermeasures against settlement, but settlement occur continuously because this ground is very soft. Site investigations such as SPT, DCPT and vane shear test were performed to determine the characteristics of ground improvement. Field measurements and FDM analysis were performed on purpose to find out the displacement of ground during injection works. From the results of this study, CGS method can be optimized by the control of diagram, space, depth, injection material, and injection pressure. CGS improved soft ground compositely by the bearing effect of CGS columns and reinforcement of adjacent ground. Considering that increase of N value is about 2.1, CGS can be considered as an effective method to increase the bearing capacity as well as to stop the settlement of soft ground. It is also expected to be economic and effective in improvement of ground when it is used in applicable sites.

  • PDF

A Study on the Consolidation Analysis of Hydraulic Fills Applying Lateral Vacuum Consolidation Method (수평진공배수공법이 적용된 준설매립지반의 압밀 해석에 관한 연구)

  • Lee, Song;Kang, Myoung-Chan;Kim, Heung-Seok
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.4
    • /
    • pp.209-220
    • /
    • 2001
  • 준설매립지반 표층강도증진을 위한 수평진공배수공법 적용시의 압밀현상 예측을 위한 연구를 수행하였다. 초연약지반에 수평배수재와 진공압을 이용하여 수평진공배수 공법을 적용할 경우, 배수재 부근에서 3차원적 배수특성과 넓은 범위의 유효응력의 변화, 지반의 압축성 및 투수성이 크게 변화하게 된다. 이를 위하여 3차원 배수특성과 다양한 경계조건, 부의 간극수압 발생을 통한 유효응력의 증가, 유효응력에 따른 압축성과 투수성의 비선형성을 포함할 수 있도록 기존의 3차원 압밀 지배방정식을 확장 유도하였고, 유효응력-간극비-투수계수의 관계를 누승형태의 함수로 표현하여 사용하였다. 해석기법의 타당성을 검증하기 위하여 실내에서 수행된 대형 토조실험 결과를 모델링하여 좋은 일치를 확인하였고, 이를 바탕으로 수평진공배수공법 적용시의 압밀효과에 대한 분석결과 드레인이 타설된 상부지반에서는 균등한 개량효과의 결과를, 하부의 미개량 지반에서는 자중압밀에 의한 압밀효과를 확인할 수 있었으며 배수재의 수평타설 간격에 따른 압밀효과 분석을 통하여 적정 배수재 설치간격의 범위를 확인하였다.

  • PDF

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

Characteristics of Settlement Reduction and Consolidation Behavior of Composition Ground Improved by Recycled-Aggregate Porous Concrete Pile (순환골재 다공질 콘크리트말뚝으로 개량된 복합지반의 침하저감 및 압밀거동 특성)

  • You, Seung-Kyong;Kim, Se-Won;Choi, Hang-Seok;Lee, Chang-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.7 no.3
    • /
    • pp.25-30
    • /
    • 2008
  • In this research, the characteristics of settlement and consolidation behavior of the composite ground formation reinforced by Recycled-Aggregate Porous Concrete Pile (RAPP) were evaluated by conducting a series of laboratory chamber tests. The effect of settlement reduction was verified by comparing the settlement of the composite ground formation with that of the unreinforced ground. In addition, it was studied how much the RAPP can accelerate consolidation in assessment of the degree of consolidation in the composite ground formation. The amount of settlement reduction was decreased with an increase on surcharge pressure, but it was greater than that of the SCP method. The RAPP and the SCP showed a similar rate of consolidation.

  • PDF

Composite Ground Effects on Small Area Replacement Ratio of Sand Piles (면적치환비가 작은 샌드파일 설치지반에서의 복합지반효과)

  • Chun, Byung Sik;Yeoh, Yoo Hyeon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.2 no.3
    • /
    • pp.57-69
    • /
    • 2001
  • Sand pile is widely used as a ground improvement method. Although the primary purpose of constructing sand pile is accelerating consolidation, composite ground effect also can be gained by constructing sand pile. This study was accomplished to understand composite ground effect on the ground improved by sand piles which were applied as vertical drainage material when area replacement ratio was small relatively. For determining bearing capacities of origin ground and sand piles and analysing interaction between embankment and origin ground, bearing tests and earth pressure monitoring are performed. From the results, it turned out that the contribution of sand pile as a load bearing mechanism is not substantial. However, the bearing capacity of sand pile was increased to sixty percentages when compared with origin ground. The increasement of bearing capacity could be caused the change of consolidation characteristics during the process of consolidation by overburden load. Therefore, the composite ground effects depending on stiffness increasement of sand pile would be estimated as a factor decreasing consolidation settlement.

  • PDF