• Title/Summary/Keyword: 지반증폭효과

Search Result 38, Processing Time 0.026 seconds

Estimation of Site Effects at Hongsung Based on 2-Dimensional Basin Modeling within Spatial Geotechnical Information System (공간 지반 정보 시스템을 활용한 2차원 분지 모델링 기반의 홍성 지역 부지 효과 평가)

  • Sun, Chang-Guk;Choo, Yun-Sik;Chung, Choong-Ki
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.253-256
    • /
    • 2008
  • 지하 토사 조건 및 지질 구조는 지진 시 지반 운동의 증폭에 관련된 부지 효과에 매우 큰 영향을 미친다. 본 연구에서는 국내 홍성 지역을 대상으로 시추 조사와 현장 탄성파 시험을 포함한 현장 조사 및 지표 부근지질 정보를 획득하기 위한 부지 답사를 통해 부지 효과를 확인하였다. 홍성 지역은 1978년 계기 지진이 발생한 지역으로서 기반암 상부에 최대 약 50 m 두께의 풍화대 지층이 분포한다. 연구 대상 지역의 공간 지층 구조를 효율적으로 확인하기 위하여 지리정보시스템(GIS) 기법 기반의 지반 정보 시스템(GTIS)의 구축하였으며, 홍성 지역은 분지는 얕고 넓은 형상임을 확인하였다. 홍성 지역의 부지 지진 응답을 평가하기 위하여 대표 단면에 대한 2차원 유한 요소 해석을 수행하였다. 도출된 지진 응답으로부터 지반 운동이 기반암 상부 토사층을 통해 전단파가 전파되면서 증폭되고 분지 형상에 따른 전단파의 상호 작용으로 생성된 표면파로 인해 분지 경계 부근 진동 지속 시간이 증가됨을 확인하였다. 뿐만 아니라, 분지 내의 선정된 토사 부지들에 대해서 추가적인 1차원 유한 요소 지진 응답 해석을 수행하였으며, 본 연구 대상 분지가 매우 얕고 넓음에 따라 분지 경계 부근을 제외하고는 분지 내 대부분의 위치에서 2차원 지진 응답과 유사한 결과를 보였다.

  • PDF

Seismic Behavior of Bridges Considering Ground Motion Spatial Variation (공간적으로 변화하는 입력지진으로 인한 교량의 지진거동특성)

  • Bae, Byung Ho;Choi, Kwang Kyu;Kang, Seung Woo;Song, Si Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.4
    • /
    • pp.759-768
    • /
    • 2015
  • The ground motions of large dimensional structures such as long span bridges at different stations during an earthquake, are inevitably different, which is known as the ground motion spatial variation effect. There are many causes that may result in the spatial variability in seismic ground motion, e.g., the wave passage effect due to the different arrival times of waves at different locations; the loss of coherency due to seismic waves scattering in the heterogeneous medium of the ground; the site amplification effect owing to different local soil properties. In previous researches, the site amplification effects have not been considered or considered by a single-layered soil model only. In this study, however, the ground motion amplification and filtering effects are evaluated by multi-layered soil model. Spatially varying ground motion at the sites with different number of layers, depths, and soil characteristics are generated and the variation characteristics of ground motion time histories according to the correlation of coherency loss function and soil conditions are evaluated. For the bridge system composed of two unit bridges, seismic behavior characteristics are analyzed using the generated seismic waves as input ground motion. Especially, relative displacement due to coherency loss and site effect which can cause the unseating and pounding between girders are evaluated. As a result, considering the soil conditions of each site are always important and should not be neglected for an accurate structural response analysis.

Evaluation of Site-Specific Seismic Amplification Characteristics in Plains of Seoul Metropolitan Area (서울 평야 지역에 대한 부지 고유의 지진 증폭 특성 평가)

  • Sun, Chang-Guk;Yang, Dae-Sung;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.4 s.44
    • /
    • pp.29-42
    • /
    • 2005
  • Total 350 borehole profiles were selected from the database of borehole logs in Seoul, for the site-specific seismic evaluation at two 4km${\times}$4km plain areas. Equivalent-linear site response analyses for the selected 350 sites were conducted based on shear wave velocity (Vs) Profiles, which were determined from the N-Vs correlation established using borehole seismic testing results in the inland areas of Korea. Most sites were categorized as site classes C and D based on the mean Vs to 30 m in depth (Vs30) ranging from 250 to 550 m/s. The she periods of the plains in Seoul ranging between 0.1 and 0.4 sec were significantly lower than those of the western US, from which the site coefficients in Korea were derived. For plains in Seoul, the site coefficients, Fa's and Fv's specified in the Korean seismic design guide, underestimate the ground motion in short-period (0.1-0.5 sec) band and overestimate the ground motion in mid-period (0.4-2.0 sec) band, respectively, because ol the differences in the geotechnical conditions between Seoul and the western US, although the Fa's in several sites overestimate the motion due to the base Isolation effect resulted from the soft layer in soil deposit.

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.

Evaluation of Site-specific Seismic Response Characteristics at Town Fortress Areas Damaged by Historical Earthquakes (역사 지진 피해 발생 읍성 지역에 대한 부지 고유의 지진 응답 특성 평가)

  • Sun, Chang-Guk;Chung, Choong-Ki;Kim, Dong-Soo;Kim, Jae-Kwan
    • The Journal of Engineering Geology
    • /
    • v.17 no.1 s.50
    • /
    • pp.1-13
    • /
    • 2007
  • In order to evaluate the local site effects at two town fortress areas in Korea where stone parapets were col-lapsed by historical earthquakes, site characteristics were assessed using site investigations such as borehole drillings and seismic tests. Equivalent-linear site response analyses were conducted based on the shear ways velocity ($V_s$) profiles and geotechnical characteristics determined from site investigations. The study sites are categorized as site classes C and B according to the mean $V_s$ to 30 m ranging from 500 to 850 m/s, and their site periods are distributed in the short period range of 0.06 to 0.16 sec, which contains the natural period of fortress wall and stone parapet. From the results of site response analyses in the study areas, for site class C indicating most of site conditions, contrary to site class B, the short-period (0.1-0.5 sec) and mid-period (0.4-2.0 sec) site coefficients, $F_a$ and $F_v$ specified in the Korean seismic design guide, underestimate the ground motion in short-period band and overestimate the ground motion in mid-period band, respectively, due to the high amplification in short period range, which represent the site-specific seismic response characteristics. These site-specific response characteristics indicate the potential of resonance in fortress walls during earthquake and furthermore could strongly affect the collapse of parapets resulted from seismic events in historical records.

Liquefaction Analysis at Multi-Layered Ground Considering Viscoplastic Effect of Clay (점성토의 점소성 효과를 고려한 다층지반의 액상화 해석)

  • Yoon, Yong-Sun;Lee, Jae-Deuk;Kim, Yong-Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.5
    • /
    • pp.59-69
    • /
    • 2013
  • 본 연구에서는 동적 점탄-점소성 구성식에 기초한 다층지반의 1차원 액상화 해석을 수행하였다. 일본 고베 포트아일랜드에서 발생한 1995 Hyogoken Nanbu 지진에 대하여 지반 모델링을 하였으며, 사질토 지반에는 탄소성 모델을, 점성토 지반에는 점탄-점소성 모델 및 탄-점소성 모델을 각각 적용하였다. 본 연구 결과, 모델 지반의 경우 지표 10 m 아래를 전후하여 액상화가 발생하였으며 액상화가 발생한 지반을 통과하는 지진파는 감쇠특성을 나타내고 이 때 전단변형률을 크게 증가시켰다. 또한, 대변형률 영역에서의 점성토의 동적거동 해석에서는 점소성 거동특성이 지배적이므로 점소성 모델의 적용이 중요함을 알 수 있었다. 한편 동적 점탄-점소성 구성모델은 대변형률 영역에서 점성토의 소성변형을 유발하는 대형 지진 발생시 점성토의 증폭 및 감쇠특성 분석에 적용 가능한 모델임을 확인하였다.

Assessment of Surface Topographic Effect in Earthquake Ground Motion on the Upper Slope via Two-Dimensional Geotechnical Finite Element Modeling (이차원 지반 유한요소 모델링을 통한 사면상부 지진지반운동의 지표면 지형효과 분석)

  • Sun, Chang-Guk;Bang, Kiho;Cho, Wanjei
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.201-213
    • /
    • 2015
  • Site effects resulting in the amplification of earthquake ground motion are strongly influenced not only by the subsurface soil conditions and structure, but also by the surface topography. Yet, over the last several decades, most studies of site-specific seismic responses in Korea have focused primarily on the seismic amplification associated with geologic and soil conditions. For example, the effects of local geology are now well established and have been incorporated into current Korean seismic design codes, whereas topographic effects have not been considered. To help address this shortcoming, two-dimensional (2D) seismic site response analyses, using finite element (FE) ground modeling with three different slope angles, were performed in order to assess the site effects of surface topography. We then compared our results, specifically peak ground acceleration (PGA) and acceleration response spectrum, to those of one-dimensional (1D) FE model analyses conducted alongside our study. Throughout much of the upper slope region, PGAs and spectral accelerations are larger in the 2D analyses than in the 1D analyses as a result of the topographic effect.

Dynamic Response for Critical Velocity Effect Depending on Supporting Stiffness of High-Speed Railway Trackbed (고속철도 노반지지조건에 따른 임계속도효과의 동적응답)

  • Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.1
    • /
    • pp.5-12
    • /
    • 2013
  • The critical velocity effect on railway trackbed means the amplification of vibration energy when the train running-speed and group velocity of ground surface wave are superimposed. It is called a pseudo-resonance phenomenon of time domain. In the past, it was not issued because the train speed was low and the ground group velocity was higher. But since the high-speed train is introduced, critical velocity reported causing a track irregularity. So far, theoretical analysis has been performed because of the complexity of formation process. However it requires reasonable consideration which is similar to actual track and trackbed conditions. In the present paper, finite element analysis to verify the critical velocity effect is performed considering each track structure and trackbed supporting stiffness. As a result, the deformation amplification caused by the critical velocity effect is verified to analyze each supporting stiffness and track system.

Typical Seismic Intensity Calculation for Each Region Using Site Response Analysis (부지응답해석을 이용한 지역별 대표 진도 산출 연구)

  • Ahn, Jae-Kwang;Son, Su-Won
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.1
    • /
    • pp.5-12
    • /
    • 2020
  • Vibration propagated from seismic sources has damping according to distance and amplification and reduction characteristic in different regions according to topography and geological structure. The vibration propagated from the seismic source to the bedrock is largely affected by the damping according to the separation distance, which can be simply estimated through the damping equation. However, it is important to grasp geological information by location because vibration estimation transmitted to the surface are affected by the natural period of the soil located above the bedrock. Geotechnical investigation data are needed to estimate the seismic intensity based on geological information. If there is no Vs profile, the standard penetration tests are mainly used to determine the soil parameters. The Integrated DB Center of National Geotechnical Information manages the geotechnical survey data performed on the domestic ground, and there is the standard penetration test information of 400,000 holes. In this study, the possibility of quantitation the amplification coefficient for each region was examined to calculated the physical interactive seismic intensity based on geotechnical information. At this time, the shear wave column diagram was generated from the SPT-N value and ground response analysis was performed in the target area. The site coefficients for each zone and the seismic intensity distribution for the seismic motion present a significant difference according to the analysis method and the regional setting.

GIS-based Spatial Zonations for Regional Estimation of Site-specific Seismic Response in Seoul Metropolis (대도시 서울에서의 부지고유 지진 응답의 지역적 예측을 위한 GIS 기반의 공간 구역화)

  • Sun, Chang-Guk;Chun, Sung-Ho;Chung, Choong-Ki
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1C
    • /
    • pp.65-76
    • /
    • 2010
  • Recent earthquake events revealed that severe seismic damages were concentrated mostly at sites composed of soil sediments rather than firm rock. This indicates that the site effects inducing the amplification of earthquake ground motion are associated mainly with the spatial distribution and dynamic properties of the soils overlying bedrock. In this study, an integrated GIS-based information system for geotechnical data was constructed to establish a regional counterplan against ground motions at a representative metropolitan area, Seoul, in Korea. To implement the GIS-based geotechnical information system for the Seoul area, existing geotechnical investigation data were collected in and around the study area and additionally a walkover site survey was carried out to acquire surface geo-knowledge data. For practical application of the geotechnical information system used to estimate the site effects at the area of interest, seismic zoning maps of geotechnical earthquake engineering parameters, such as the depth to bedrock and the site period, were created and presented as regional synthetic strategy for earthquake-induced hazards prediction. In addition, seismic zonation of site classification was also performed to determine the site amplification coefficients for seismic design at any site and administrative sub-unit in the Seoul area. Based on the case study on seismic zonations for Seoul, it was verified that the GIS-based geotechnical information system was very useful for the regional prediction of seismic hazards and also the decision support for seismic hazard mitigation particularly at the metropolitan area.