• Title/Summary/Keyword: 지반정수 산정

Search Result 152, Processing Time 0.028 seconds

A Case Study on Geotechnical Properties and Weathering Degree of Weathered Granite Rock (화강 풍화암의 지반특성 및 풍화도 평가에 대한 사례 연구)

  • Lee, Seung-Hwan;Yoo, Byeong Soo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.127-139
    • /
    • 2017
  • Site investigation including boring and various in-situ borehole test (Pressuremeter test, Borehole shear test, Downhole test, Suspension PS logging, Density logging) and X-ray fluorescence analysis for rock core sample were performed to estimate geotechnical properties and weathering degree of weathered granite rock in Goyang. Deformation modulus, shear strength parameter and shear wave velocity estimated through in-situ borehole test had a tendency to increase with depth. And several chemical weathering indices evaluated by X-ray fluorescence analysis had a general tendency of reducing weathering degree in accordance with depth. Also, relationship between VR determined as a representative weathering index and the geotechnical properties was analyzed.

The Influence of Moisture on the Interface Shear Strength Between Geosynthetics (토목섬유의 접촉 전단강도에 대한 함수비의 영향)

  • Seo, Min-Woo;Park, In-Joon;Park, Jun-Boum
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.2
    • /
    • pp.75-85
    • /
    • 2004
  • Various geosynthetics are widely installed as a liner or a protective layer of waste landfills. The interface shear strength between the layers of geosynthetics in waste landfills is an important parameter to ensure the safety of bottom and cover system design. In this study, estimations of interface shear strength between geomembrane and geotextile or Geosynthetic Clay Liners (GCL) are performed by large direct shear tests. Especially, this research is focused on the effect of moisture within the interface shear strength between geosynthetics, because most interfaces are vulnerable to rain, leachate and groundwater beneath the liners.

Characterization of Tensile Strength of Anisotropic Rock Using the Indirect Tensile Strength Test (간접인장강도시험을 통한 이방성 암석의 인장강도 특성)

  • 김영수;정성관;최정호
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.133-141
    • /
    • 2002
  • Isotropic rock and anisotropic rock have different tensile strength which has the greatest influence on rock failure. In this study, elastic modulus of anisotropic rock is obtained through uniaxial compression test, and tensile strength and tension failure behavior are analyzed through indirect tensile strength test. Stress concentration factor of a specimen at the center is obtained from anisotropic elastic modulus and strain by indirect tensile strength test. Theoretical solutions for tensile strength of isotropic and anisotropic rock are compared. Stress concentration factor of anisotropic rock is either higher or lower than isotropic rock depending on the inclination angle of bedding plane. The use of stress concentration factor of isotropic rock resulted in overestimation or underestimation of tensile strength.

Effects of Grain Size Distribution on the Shear Strength and Rheological Properties of Debris Flow Using Direct Shear Apparatus (직접전단장비를 이용한 토석류의 전단강도 및 유변학적 특성에 대한 입도분포의 영향 연구)

  • Park, Geun-Woo;Hong, Won-Taek;Hong, Young-Ho;Jeong, Sueng-Won;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.12
    • /
    • pp.7-20
    • /
    • 2017
  • In this study, effects of grain size distribution on the shear strength and rheological properties are investigated for coarse- and fine-grained soils by using direct shear apparatus. Shear strengths are estimated for fine-grained soils with the maximum particle size of 0.075 mm and coarse-grained soils with the maximum particle size of 0.425 mm and fine contents of 17% prepared at dry and liquid limit states. The direct shear tests are conducted under the relatively slow shear velocity, which corresponds to the reactivated landslide or debris flow after collapse according to the landslide classification. In addition, for the evaluation of rheological properties, residual shear strengths for both fine- and coarsegrained soils prepared under liquid limit states are obtained by multiple reversal shear tests under three shear velocities. From the relationship between residual shear strengths and shear rates, Bingham plastic viscosity and yield stress are estimated. The direct shear tests show that cohesions of fine-grained soil are greater than those of coarse-grained soil at both dry and liquid limit states. However, internal friction angles of fine-grained soil are smaller than those of coarse-grained soil. In case of rheological parameters, the plastic viscosity and yield stress of fine-grained soils are greater than those of coarse-grained soils. This study may be effectively used for the prediction of the reactivated landslide or debris flow after collapse.

Evaluation of Preconsolidation Stress Considering Small-Strain Shear Wave Velocity (미소변형 전단파 속도를 고려한 설행압밀하중 산정)

  • Yoon, Hyung-Koo;Lee, Chang-Ho;Kim, Joon-Han;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.5
    • /
    • pp.5-16
    • /
    • 2009
  • Preconsolidation stress is one of the important design parameters in soft soils because the behavior of saturated soft soils changes dramatically at the preconsolidation stress. For the estimation of preconsolidation stress, the global vertical settlement without considering micro strain behavior has been considered. The purpose of this study is to propose and verify a new method called the "shear wave velocity method" for determination of the preconsolidation stress reflecting on particle behavior at the small-strain. In this study, the undisturbed soft soils obtained at Busan, Incheon and Gwangyang in Korea were used. The oedometer cell incoporated with the bender elements is used for the consolidation tests under the $K_0$ condition. The preconsolidation stress determined by the proposed method is compared with that estimated by Casagrande (e-log p'), Sridharan (log (1+e)-log p'), and Onitsuka (In(1+e)-log p') methods. This study suggests that the shear wave velocity method may determine simply the preconsolidation stress with considering the small-strain behavior.

A Study on the Stability Analysis and Countermeasure of Tunnel Portal Failure Slope - in Suanbo Hot Springs 1 and 2 Tunnel Failure Site (터널 갱구부 붕괴 사면의 안정성 해석 및 보강공법에 관한 연구 - 수안보 온천 1, 2터널 붕괴 현장을 중심으로)

  • Baek, Yong;Koo, Ho-Bon;Yoo, Ki-Jeong
    • The Journal of Engineering Geology
    • /
    • v.12 no.4
    • /
    • pp.367-378
    • /
    • 2002
  • Recently, the number of tunnels on national roads has been increased due to the trend that construction of the large-scaled cut slopes is limited because of the environmental issues. Therefore, the slope failures of tunnel portal have often occurred. The tunnel portal in use has limitations on selection of the countermeasure and construction against slope failure. In the cases of Suanbo hot springs 1 and 2 tunnel portals, seedding was chosen and constructed as the countermeasureof slope failure when the tunnel was first built but collapsed in April, 2002. In this study, the failure sites were examined accurately through the site investigation and an efficient countermeasure according to stability analysis is presented. It is shown that it is very efficient to use resloping for Suanbo hot springs 1 tunnel and concrete buttress, rock anchor to reinforcement countermeasure, and attached rockfall prevention net by dividing the site into 3 sections for Suanbo hot springs 2 tunnel.

Compressibility Characteristics Associated with Depositional Environment of Pusan Clay in the Nakdong River Estuary (낙동강 하구지역 부산점토의 퇴적환경에 따른 압축특성)

  • Chung, Sung-Gyo;Ninjgarav, E.;Ryu, Chun-Kil;Jang, Woo-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.12
    • /
    • pp.57-65
    • /
    • 2006
  • In the Nakdong River estuary soft and thick clay, which called Pusan clay, are deposited. Despite a number of great reclaimed projects that have been performed in the area, the consolidation settlement and time have been significantly underestimated due dominantly to sample disturbance, since the last decade. In order to resolve the underestmation, it was necessary to examine the compressibility characteristics through a systematic geotechnical investigation on the clay. In this study an advanced sampling technique was adopted on two sites chosen along the coastline, and then oedometer testing and geological investigation were performed for the undisturbed and reconstituted samples. As the results, the compressibility parameters of the clay were representatively determined, as well as their correlation. Particularly the effects of depositional environment on the physical indexes, level of structure, sample disturbance and compressibility parameters were analyzed for the clay.

Suggestion on Reasonable Boundary Conditions for Modeling a Tunnel Shield by Displacement Control Method (변위 제어를 통한 터널 쉴드 모델링의 적정 경계조건 제안)

  • Kim, Jeong-Soo;Kim, Moon-Kym
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.512-515
    • /
    • 2011
  • 터널 해석은 주로 지표침하와 터널 라이닝 내 단면력 산정에 초점이 맞춰지며 이는 시공단계를 고려한 3차원 수치해석 모델을 이용해 결정할 수 있다. 수치해석 시 shield는 응력 제어, shell element로 모델링하는 방법 등으로 모사될 수 있다. 한편 변위 제어를 통한 쉴드 모사는 shield를 적절한 경계조건으로 처리함으로서, 다른 shield 모사 방법에 비해 모델링 작업을 간소화하고 해석의 효율성을 높일 수 있다. 본 연구에서는 변위 제어에 의한 shield 모사를 위한 적정 경계조건을 제안한다. 이를 위해 시공단계가 고려된 유한요소해석을 사용하여, 쉴드 및 굴착면에서의 경계조건 변화와 이에 따른 지표침하 관측 수행하였다. 제안된 shield 변위 제어로부터 얻어진 해석결과를 이론적인 해와 비교함으로서, 제시된 shield 모델링 방법의 적정성과 지반 거동 변화를 평가하고자 한다. 해석 결과는 지반 모델의 지표침하를 기준으로 관찰되었으며, 변위제어에 의한 결과와 요소에 의한 모델링 결과가 유사하게 얻어짐을 보여준다. 또한 변위제어의 쉴드 모사에서 회전 구속보다 변위 구속 조건에 지배적으로 영향을 받음을 확인하였다.

  • PDF

Evaluation of Strength Parameters of North-Cheju Basalt Rubble Using Large-Scale Triaxial Test (대형삼축압축시험을 이용한 북제주현무암 사석재의 강도정수 산정)

  • 정철민;김종수;채영수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.189-196
    • /
    • 2002
  • According to the Korean Design Code for port and harbor facilaties, bearing capacity of rubble mound under eccentric and inclined load is calculated by the simplified Bishop method, and strength parameters are recommended to be c=0.2kg/$\textrm{cm}^2$ and ø=35$^{\circ}$for standard rubble if the compressive strength of parent rock is greater than 300kg/$\textrm{cm}^2$, quoting from research results by Jun-ichi Mizukami(1991), But this facts have never been certified in Korea because there was not large-scale triaxial test apparatus until 2000 in Korea. Firstly in Korea, the large-scale triaxial test (sample diameter, 30cm and height, 60cm) on the rubble originated from porous basalt rock in North-Cheju was accomplished. Then strength parameters for basalt rubble produced in North-Cheju are recommended to be c=0.3kg/$\textrm{cm}^2$ and ø=36$^{\circ}$if the compressive strength of parent rock is greater than 400kg/$\textrm{cm}^2$.

  • PDF

Rock Mechanics Modeling of the Site for the 2nd Step Construction of the KAERI Underground Research Tunnel (KURT) (KURT 2단계 건설부지에 대한 암석역학모델 설정)

  • Jang, Hyun-Sic;Ko, Chi-Hye;Bae, Dae-Seok;Kim, Geon-Young;Jang, Bo-An
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.247-260
    • /
    • 2014
  • Rock masses at the site for the $2^{nd}$ step construction of the KAERI Underground Research Tunnel (KURT) are divided into six units to establish a rock mechanics model that is dependent on the geological characteristics and degree of joint development. The site primarily consists of three granitic units (G1, G2, and G3), two dykes (D1 and D3), and a fault zone of poor rock mass quality (F3). The F3 unit crosses the tunnel at the beginning of the site of $2^{nd}$ step construction. The rock masses of each unit are classified by RMR (Rock Mass Rating), Q-system, and RMi (Rock Mass Index), all based on borehole logging data. The deformation modulus, rock mass strength, cohesion, and friction angle for each unit are calculated using established empirical relationships. The representative rock mass classification and geotechnical parameters for the rock mass units are established, and a rock mechanics model for the site is proposed, which will be useful in the design and stability analysis of the $2^{nd}$ step construction of KURT.