• Title/Summary/Keyword: 지반재해

Search Result 289, Processing Time 0.033 seconds

Analysis of Subsidence Mechanism and Development of Evaluation Program (지반침하 메커니즘 분석 및 평가 프로그램 개발)

  • Choi Sung O.;Jeon Yang-Soo;Park Eu-Sup;Jung Yong-Bok;Chun Dae-Sung
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.195-212
    • /
    • 2005
  • Surface subsidence which occurs with several reasons, such as collapse of gangway, discharge of groundwater, compaction of weak rock mass, and tunnel excavation in shallow depth, gives rise to a serious problem in national infra-structures. In this study, therefore, the mechanism of subsidence has been examined numerically to overcome the passive approach on subsidence occurrence area. With many kinds of numerical studies, the major geotechnical parameters have been selected and the weighted values have been defined for each parameters. Also the authors developed the numerical program which can estimate the possibility of subsidence occurrence, and proposed the decision method for objective and quantitative guideline. It is anticipated that this research will be helpful to establish the hazard map on subsidence region.

Analysis of Slope Hazard-Triggering Rainfall Characteristics in Gangwon Province by Database Construction (DB구축을 통한 강원지역 사면재해 유발강우특성 분석)

  • Yune, Chan-Young;Jun, Kyoung-Jea;Kim, Kyung-Suk;Kim, Gi-Hong;Lee, Seung-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.10
    • /
    • pp.27-38
    • /
    • 2010
  • In every summer season, most of the slope failures and debris flows occurr due to seasonal rain, typhoon, and localized extreme rainfall in Gangwon Province where 83% of the area is of mountain region. To investigate the slope-hazard triggering rainfall characteristics in Gangwon Province, slope hazard data, precipitation records, and forest fire data were collected and the DATABASE was constructed. Analysis results based on the DATABASE showed that many slope hazards occurred when there was little rainfall and the preceding rainfall had more effect on the slope hazard than the rainfall intensity at the day of hazard. It also showed that the burned area by forest fire was highly susceptible to slope hazard with low rainfall intensity, and the slope hazard in burned area showed highest frequency, especially, under the rainfall below 2-year return period.

Comparison of Liquefaction Probability Map Regarding with Geotechnical Information and Spatial Interpolation Target (공간보간 대상 및 지반정보에 따른 액상화 확률지도 비교)

  • Song, Seongwan;Hwang, Bumsik;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.11
    • /
    • pp.5-13
    • /
    • 2021
  • The interest of expecting the liquefaction damage is increasing due to the liquefaction in Pohang in 2017. Liquefaction is defined as a phenomenon that the ground can not support the superstructure due to loss of the strength of the ground. As an alternative against this, many studies are being conducted to increase the precision and to compose a liquefaction hazard map for the purpose of identifying the scale of liquefaction damage using the liquefaction potential index (LPI). In this research, in order to analyze the degree of precision with regard to spatial interpolation objects such as LPI value and geotechnical information for LPI determination, liquefaction hazard map were made for the target area. Furthermore, based on the trend of precision, probability value was analyzed using probability maps prepared through qualitative characteristics. Based on the analysis results, the precision of the liquefaction hazard map setting the spatial interpolation object as geotechnical information is higher than that as LPI value. Furthermore, the precision of the liquefaction hazard map does not affect the distribution of the probability value.

Uniform Hazard Spectrum Evaluation Method for Nuclear Power Plants on Soil Sites based on the Hazard Spectra of Bedrock Sites (암반 지반의 재해도 스펙트럼에 기반한 토사지반 원전 부지의 등재해도 스펙트럼 평가 기법)

  • Hahm, Dae-Gi;Seo, Jeong-Moon;Choi, In-Kil;Rhee, Hyun-Me
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.35-42
    • /
    • 2012
  • We propose a probabilistic method to evaluate the uniform hazard spectra (UHS) of the soil of nuclear power plant(NPP) sites corresponding to that of a bedrock site. To do this, amplification factors on the surface of soil sites were estimated through site response analysis while considering the uncertainty in the earthquake ground motion and soil deposit characteristics. The amplification factors were calculated by regression analysis with spectral acceleration because these two factors are mostly correlated. The proposed method was applied to the evaluation of UHS for the KNGR (Korean Next Generation Reactor) and the APR1400 (Advanced Power Reactor 1400) nuclear power plant sites of B1, B4, C1 and C3. The most dominant frequency range with respect to the annual frequency of earthquakes was evaluated from the UHS analysis. It can be expected that the proposed method will improve the results of integrated risk assessments of NPPs rationally. We expect also that the proposed method will be applied to the evaluation of the UHS and of many other kinds of soil sites.

The Prediction of Landslide Hazard Areas Considering of Root Cohesion and Crown Density (뿌리점착력과 수관밀도를 적용한 토사재해 위험지역 예측)

  • Choi, Won-Il;Choi, Eun-Hwa;Suh, Jin-Won;Jeon, Seong-Kon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.6
    • /
    • pp.13-21
    • /
    • 2016
  • Since the landslide hazard areas prediction was analyzed by slope-angle and soil properties, regional characteristics is not taken. Therefore, in order to make more rational prediction, it is necessary to consider the characteristics of the region. Tree roots have been known to increase soil cohesion in landslide hazard areas and to vary the degrees depending on the tree type. In addition, a reasonable prediction of landslide hazard areas can be made by considering crown density based on crown distribution patterns of the area of interest. In this study, using the roots cohesion considering the crown density of the trees, which is in the landslides risk areas around Mt. Gwehwa in Sejong City, the landslides risk areas were predicted and compared with predicted results obtained by not considering root cohesion.

Analysis of Disaster for Common Utility Tunnel & Schemes of Establishing Construction criteria (공동구 재해사례와 건설기준 제정방안)

  • Yoo, Jai-Sung;Lim, Jong-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1236-1245
    • /
    • 2009
  • 공동구는 도시생활을 영위하는 데 필요한 전기, 가스, 상 하수도, 전화, 통신 등의 공공시설물을 지하매설물 형태로 설치하여 시민들의 일상생활 및 사회 경제활동의 편의성을 제공하고 안전하고 안락한 도시환경을 유지시키며, 효율적인 도시운영이 가능케 하는 공공시설물이다. 그러나, 최근 들어 여의도 공동구 화재(2000년), 여수 공동구 침수(2003년), 구리시 전력구 화재(2006)등과 같이 공동구 및 전력구에서의 화재, 혹은 침수 등에 의해 재해가 발생하여 이로 인한 국가적 경제적, 사회적 손실이 늘어가고 있다. 하지만 국내에서는 공동구내 설비를 화재 및 재해로부터 보호하기 위한 법적 장치가 미비한 실정이며, 현재 운영되고 있는 공동구의 관리 또한 시설관리공단이나 위탁관리기관 등으로 분산되어 있어 일정한 시설물 설치기준이나 유지관리제도가 정립되지 못하여 효율적인 운영이 이루어지지 않다고 판단된다. 본 연구에서는 근래 국내에서 발생한 공동구 재해사례와 공동구 관련 법규를 검토 분석하였으며, 다양화되어 가는 공동구 수용시설 조건에 부합하고 체계적이고 효율적인 공동구의 시공을 위한 공동구 건설기준 제정방안을 도출하였다.

  • PDF

A Case Study of GIS-Based Site Classification in the Gyeongsang Province Constrained by Geologic and Topographic Information (GIS기반의 지질·지형 자료를 활용한 경상도지역의 지반분류 사례)

  • Kang, Su-Young;Kim, Kwang-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.136-145
    • /
    • 2009
  • Site characteristic is an important input parameter in the geologic hazard assessments including, but not limited to, earthquakes, liquefaction and landslides. Although it is a routine to use data collected by boreholes or seismic prospecting for site classifications, we used indirect methods using the geologic and the topographic maps. A site classification map in the Gyeongsang Province has been produced by GIS tools based on geologic age, rock types, and elevations from the geologic map and the topographic map of Korea. Site B (rock site) is dominant in the study area, although softer soils are observed along rivers and in reclaimed lands. We have found that 73% of the site classification results in the study are in concordance with those obtained from borehole data. Observed discrepancies are attributed to errors in the geologic and the topographic maps. For some sites, the origin of the differences is not clear, which requires a further field study or a drilling. Site classification from this study provides essential information for reliable hazard assessments of earthquakes, floods, landslides and liquefaction. Results obtained in the study also play a crucial role in land use planning for developing areas.

  • PDF

Analysis of Hazard Areas by Sediment Disaster Prediction Techniques Based on Ground Characteristics (지반특성을 고려한 토사재해 예측 기법별 위험지 분석)

  • Choi, Wonil;Choi, Eunhwa;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.47-57
    • /
    • 2017
  • In this study, a predictive analysis was conducted on sediment disaster hazard area by selecting six research areas (Chuncheon, Seongnam, Sejong, Daejeon, Miryang and Busan) among the urban sediment disaster preliminary focus management area. The models that were used in the analysis were the existing models (SINMAP and TRIGRS) that are commonly used in predicting sediment disasters as well as the program developed through this study (LSMAP). A comparative analysis was carried out on the results as a means to review the applicability of the developed model. The parameters used in the predictions of sediment disaster hazard area were largely classified into topographic, soil, forest physiognomy and rainfall characteristics. A predictive analysis was carried out using each of the models, and it was found that the analysis using SINMAP, compared to LSMAP and TRIGRS, resulted in a prediction of a wider hazard zone. These results are considered to be due to the difference in analysis parameters applied to each model. In addition, a comparison between LSMAP, where the forest physiognomy characteristics were taken into account, and TRIGRS showed that similar tendencies were observed within a range of -0.04~2.72% for the predicted hazard area. This suggests that the forest physiognomy characteristics of mountain areas have diverse impacts on the stability of slopes, and serve as an important parameter in predicting sediment disaster hazard area.

Groundwater Management System for Prediction of Ground Subsidence (지반침하의 사전 예측을 위한 지하수 관리방안)

  • Chae, Dong Seok
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2020.06a
    • /
    • pp.58-58
    • /
    • 2020
  • 최근 급속한 지하공간의 개발로 인해 도로함몰 등 지반침하가 지속적으로 발생되어 이에 대한 안전문제가 끊임없이 제기됨에 따라, 원인규명 및 대책방안을 두고 다양한 조사 및 연구가 진행되고 있다. 특히 지하개발 시 필연적으로 발생하는 유출지하수 내 지하수와 함께 토사가 유출될 경우 지반함몰이나 붕괴로 이어져 대규모 재해가 발생할 수 있기 때문에 현장에서 계측되는 데이터를 통해 사전에 지반침하를 감지할 수 있는 경보 시스템이 마련될 필요가 있으며, 이에 대한 기술개발과 관리기준의 변화가 필요하다. 본 연구에서는 현재 지하공간 개발 시 적용되는 지하수 관리 매뉴얼 중 가장 중요한 부분인 계측관리 부분에 관해 문제점을 분석하고 이를 보완하기 위한 계측 관리 및 행정 절차의 문제점을 개선하고자 한다. 지중에서 발생하는 토립자의 이동, 공동발생 및 지반함몰의 거동은 근본적으로 지하수의 이동에 의해 필연적으로 발생되며, 그 규모는 유출지하수량의 발생규모와 상관성이 높게 분석되었다. 계측 관리의 문제를 보완하기 위하여 첫 번째로 지중 굴착 시 계측되는 유출지하수와 지하수위를 연계하여 분석하여 기준을 마련하였고, 추가로 지하수 내 탁도 값을 측정하여 이를 더하여 서로간 상관성 분석을 통해 기존 지하수위 계측자료의 관리기준을 보완하였으며, 최종적으로 현장에서의 계측된 데이터를 통해 지반침하를 사전에 예측할 수 있다. 계측된 데이터의 분석결과 위험도가 감지될 경우 공동발생의 방지 및 복구에 관한 방안이 제시되며, 문제 발생 지점의 범위를 국한하여 신속하고, 경제적으로 해결해 나갈 수 있다. 이를 위해 현행 지하수법의 개선과 행정적 절차가 보완되어야 할 필요가 있다. 이러한 지하공간 개발 시 지하수 관리의 개선으로 사전에 지반침하를 예측 할 수 있고, 이를 통해 재해를 미연에 방지할 뿐만 아니라 건설산업 현장의 스마트 관리체계를 구성하여 미래 지향적인 토목현장 및 국민에 대한 신뢰도를 재고 할 수 있을 것으로 사료된다.

  • PDF

Comparison of Liquefaction Assessment Results with regard to Geotechnical Information DB Construction Method for Geostatistical Analyses (지반 보간을 위한 지반정보DB 구축 방법에 따른 액상화 평가 결과 비교)

  • Kang, Byeong-Ju;Hwang, Bum-Sik;Bang, Tea-Wan;Cho, Wan-Jei
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.4
    • /
    • pp.59-70
    • /
    • 2022
  • There is a growing interest in evaluating earthquake damage and determining disaster prevention measures due to the magnitude 5.8 earthquake in Pohang, Korea. Since the liquefaction phenomena occurred extensively in the residential area as a result of the earthquake, there was a demand for research on liquefaction phenomenon evaluation and liquefaction disaster prediction. Liquefaction is defined as a phenomenon where the strength of the ground is completely lost due to a sudden increase in excess pore water pressure caused due to large dynamic stress, such as an earthquake, acting on loose sand particles in a short period of time. The liquefaction potential index, which can identify the occurrence of liquefaction and predict the risk of liquefaction in a targeted area, can be used to create a liquefaction hazard map. However, since liquefaction assessment using existing field testing is predicated on a single borehole liquefaction assessment, there has been a representative issue for the whole targeted area. Spatial interpolation and geographic information systems can help to solve this issue to some extent. Therefore, in order to solve the representative problem of geotechnical information, this research uses the kriging method, one of the geostatistical spatial interpolation techniques, and constructs a geotechnical information database for liquefaction and spatial interpolation. Additionally, the liquefaction hazard map was created for each return period using the constructed geotechnical information database. Cross validation was used to confirm the accuracy of this liquefaction hazard map.