• Title/Summary/Keyword: 지반응답해석

Search Result 413, Processing Time 0.033 seconds

Hyperelement를 사용한 축대칭 구조물의 지진 응답 해석

  • 장승필;김재관;전병무
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.999-1004
    • /
    • 1995
  • 본 논문에서는 현재 수행 중인 Hualien 대형내진모델시험 프로젝트의 연구 과제 중의 강제 진동 해석 및 지진 응답 해석을 수행하기 위계서 Hyperelement를 사용한 지반-구조물 상호작용 해석에 대한 절차 및 방법을 연구하였다. Hualien 대형내진모델시험에서 이미 수행된 뒷채움 후 강제 진동 시험의 예 측 및 예측후 해석을 수행하였고, 지진 응답 해석을 위해서는 Hualien부지에서의 자유장해석을 통하여 입력 지반 운동을 결정하여 구조물에서의 지진 응답을 구하였다.

  • PDF

Free Field Response Analysis Using Dynamic Fundamental Solution (다층반무한 기본해를 이용한 자유장응답해석)

  • 김문겸;임윤묵;김민규;이종우
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.2
    • /
    • pp.83-91
    • /
    • 2001
  • 본 연구에서는 2차원 평면상에서 자유장응답 해석을 위하여 유한요소-경계요소 조합에 의한 수치해석기법을 개발하였다. 전체 계를 외부영역과 내부영역으로 구분하였다. 외부영역은 동적 다층반무한 기본해를 이용한 경계요소로 모형화되고 내부영역은 유한요소로 모형화하여 조합하였다. 다층지반의 외부에서 입사하는 지진에 의한 지진응답해석을 수행하기 위하여 동적기본해를 이용한 자유장응답해석을 수행하였다. 지진응답해석에서는 지반의 전단병형률에 따라 변화하는 비선형특성을 모형화하기 위해 등가선형화기법을 적용하였다. 지진응답해석의 검증에 의하여 해석결과를 상용프로그램의 결과와 비교하였다. 결과적으로 지진응답해석을 효과적으로 수행할 수 있는 수치해석기법을 개발하였고 구조물이 있는 경우로의 확장돠 가능하게 되었다.

  • PDF

Parameter Identification and Nonlinear Seismic Analysis of Soil-Structure Interaction System (지반-구조물 상호작용계의 강성계수추정 및 비선형지진해석)

  • 윤정방;최준성;김재민;김문수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.1
    • /
    • pp.41-49
    • /
    • 1997
  • This paper presents the result of an international cooperative research on the post-correlation analysis of forced vibration tests and the prediction of earthquake responses of a large-scale seismic test structure. The dynamic analysis is carried out using the axisymmetric finite element method incorporating in finite elements for the for field soil region. Through the post-correlation analysis, the properties of the soil layers are revised so that the best correlation in the responses may be obtained compared with the measured force vibration test data. Utilizing the revised soil properties as the initial linear values, the seismic responses are predicted for an earthquake using the equivalent linearlization technique. It has been found that the predicted responses by the equivalent nonlinear procedure are in excellent agreement with the observed responses, while those using the linear properties are fairly off from the measured results.

  • PDF

Seismic Responses of Wall-Slab Apartment Building Structures Built on the Soft Soil Layer Considering the Stiffnesses of a Foundation-Soil System (연약지반의 기초지반강성을 고려한 벽식구조 아파트의 지진응답)

  • 김지원;김용석
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.3
    • /
    • pp.19-27
    • /
    • 2001
  • In this seismic analyses of structures, it is well recognized that the effects of soil-structure interaction can not be ignored and seismic responses of a structure taking into account the stiffnesses of a foundation-soil system show the significant difference from those with a rigid base. However, current seismic analyses of apartment building structures were carried out with the rigid base ignoring the characteristics of the foundation and the properties of the underlying soil. In this study, seismic analyses of wall-slob type apartment buildings which have a particular structural type were carried out taking into account the soft soil layer comparing seismic response spectra of a flexible base with those of a rigid base and UBC-97. Low-rise or middle height wall-slab type apartment buildings built on the deep soft soil layer showed a rigid body motion with the reduced seismic responses due to the base isolation effect, indicating that it is considerably safe but uneconomical to utilize the design spectra of UB-97 for the seismic design of wall-slab type apartment buildings due to conservative design.

  • PDF

Hualien 대형내진모델의 지진응답 예측해석

  • 윤철호;김문수;이상국;현창헌;윤정방;김재민
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1995.05b
    • /
    • pp.993-998
    • /
    • 1995
  • 본 연구는 국제공동연구로 수행중인 Hualien 대형내진모델시험사업중 모델구조물에 대한 지진 응답 예측해석(blind prediction analysis)에 관한 것이다. 이 해석은 축대칭 무한요소를 이용하여 개발한 전산프로그램 KIESSI와 유연체적법에 의한 전산프로그램 SASSI를 이용하여 수행하였으며, 구조물 및 지반 특성은 뒷채움이 완료된 모델구조물에 대한 통일모델과 예측 후 상관해석 결과를 사용하였다. 그 결과 지진응답 예측해석 결과는 계측된 지진응답과 비교적 잘 일치하였으나 더 좋은 해석결과를 얻기 위해서는 구조물 및 지반 특성을 좀 더 수정할 필요가 있음을 알 수 있었다.

  • PDF

Study on the Applicability of Standard Design Response Spectrum Analysis Method for Pile-type Mooring Facilities (말뚝식 계류시설의 표준설계응답스펙트럼 해석법 적용성 연구)

  • Oh, Jeong-Keun;Jeong, Yeong-Seok;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.5
    • /
    • pp.27-36
    • /
    • 2020
  • The purpose of this paper is to study on the applicability of the standard design response spectrum from the response spectrum analysis method, mainly applied to pile mooring facilities. To this end, after performing the ProShake 1-dimensional site response considering various geological conditions, the current standard design response spectrum was compared, and the ground-pile model in time history and two-dimensional site response analysis using Abaqus were performed to analyze the dynamic behavior of the ground-pile and to examine the selection method of the reference surface of the response spectrum on the installed slope, respectively. As a result, it was confirmed that no problems were found in the applicability of the current standard design response spectrum and no improvements are needed as well when considering the characteristics of the ground-pile dynamic behavior and the slope of the pile mooring facility.

Nonlinear Seismic Response Analysis for Shallow Soft Soil Deposits (낮은 심도의 연약지반에 대한 비선형 지진응답해석)

  • Park, Hong-Gun;Kim, Dong-Kwan;Lee, Kyung-Koo;Kim, Dong-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.1-12
    • /
    • 2010
  • This study presents a finite element analysis method that can accurately evaluate the nonlinear behaviour of structures affected by shallow soft subsoils and the soil-structure interaction. A two-dimensional finite element model that consists of a structure and shallow soft subsoil was used. The finite element model was used for a nonlinear time domain analysis of the OpenSees program. A parametric study was performed to investigate the effects of soil shear velocities, earthquake input motions, soft soil depth, and soil-structure interaction. The result of the proposed nonlinear finite element analysis method was compared with the result of an existing frequency domain analysis method, which is frequently used for addressing nonlinear soil behavior. The result showed that the frequency domain analysis, which uses equivalent secant soil stiffness and does not address the soil-structure interaction, significantly overestimated the response of the structures with short dynamic periods. The effect of the soil-structure interaction on the response spectrum did not significantly vary with the foundation dimensions and structure mass.

Estimation of Seismic Responses of Hualien LSST Model By the Substructure Method of Soil-Structure Inraction Analysis (Hualien 대형지진시험 모델의 지진응답해석)

  • 조양희;박형기
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.59-68
    • /
    • 1997
  • Seismic responses of the Hualien large scale seismic test model on a layered soil site are estimated for three recorded earthquakes with different level of peak acceleration using two different approaches of soil-structure interaction analysis. The analysis results are then compared and evaluated with the recorded. The method adopted for the analysis is based on substructuring method using a lumped parameter model in both the frequency and time domain. The study results indicate that the proposed method can reasonably estimate the earthquake responses of a soil-structure interaction system of r engineering purposes if the techniques of defining input motion and modeling of the backfilled soil are prudently selected.

  • PDF

Evaluation of Seismic Response Characteristics of Hong-Seong Area based on In-Situ and Laboratory Tests (현장 및 실내시험에 기초한 홍성지역 지진응답특성 평가)

  • 박덕근;김교원
    • The Journal of Engineering Geology
    • /
    • v.11 no.1
    • /
    • pp.25-35
    • /
    • 2001
  • For the ground resrxmse analysis, both in-situ and laboratory testing techniques such as downhole, SASW, resonant column and torsional shear tests were perlormed for Hong-Seong area. The grOlmd upper 30m is classified as SD since it has an average shear wave velocity as 209m/s. The response specLrums obtained by site-specific analyses generally satisfied the seismic code, but near the resonance period the motion was evaluated to be higher than the code.

  • PDF

Modification of Response Displacement Method for Seismic Design of Underground Structures under Domestic Conditions (국내 특성이 반영된 지하구조물의 내진설계를 위한 수정응답변위법)

  • 김명철;김영일;조우연;김문겸
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.83-93
    • /
    • 2004
  • In this study. the Modified Response Displacement Method(MRDM) for seismic design of underground box-type structures is proposed. Firstly, to investigate the applicability of the conventional RDM, various parametric studies are performed according to buried depth and soil conditions. Results from the conventional RDM are compared with those of time history analysis in terms of the maximum bending moment and relative displacement. The comparison shows that the velocity response spectrum and the determination method of foundation modulus which significantly influence the accuracy of RDM should be modified. Thus, the modified velocity response spectrum and the new determination method of foundation modulus are proposed under consideration of domestic conditions. In order to demonstrate the accuracy and validity of the proposed MRDM numerical analyses are performed according to different parameters such as depth of base rock, height and width of box, buried depth and soil condition. the comparison with the results of the time history analysis verifies the feasibility of the proposed MRDM for the seismic analysis.