• Title/Summary/Keyword: 지반안정화

Search Result 139, Processing Time 0.017 seconds

A Study on the Behavior of Soft Clay Foundation Reinforced with Soil Cement Piles by Centrifugal Model Tests (원심모형실험에 의한 시멘트 개량말뚝으로 보강된 연약점토지반의 거동에 관한 연구)

  • Lee, Cheo-Keun;Shin, Bang-Woong;Heo, Yol;Ahn, Sang-Ro
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.109-120
    • /
    • 1994
  • One of problems being faced during construction of soil structures along the coastal regions is the stabilization of soft clay foundation, In this study, centrifugal model bests were conducted to investigate behavior effect of soft foundation reinforced by cement -soil piles for the stabilization of softs clay foundation during the embankment construction. This paper presents results of settlement and heaving behavior of reinforced and unreinforced foundation with time under the swaged loading for different best conditions. The test results have shown that the reductions of vertical settlement of the foundation and heaving of the ground surface adjacent to the embankment are greatly influenced by strength of improved pile, and moisture content, and especially the ratio of replacement area.

  • PDF

Fundamental Studies on Stabilization of Shallow Slope Failure Using Lime Pile - Changes of Clayey Properties with Lime Addition - (생석회 파일을 이용한 얕은 사면 파괴의 안정화에 대한 기초 연구 - 생석회 첨가에 따른 점성토의 특성 변화 중심으로 -)

  • Kwon, Moonam;Goo, Jeungmin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.5
    • /
    • pp.49-55
    • /
    • 2006
  • Quick lime made from limestone that are deposited abundantly in Korea has excellent potentials for stabilization of clayey soils. If Korea is able to take advantage of its abundant supply, economical efficiency could be achieved through mass production as well as being able to take advantage of utilization of natural resources. For stabilizing of clayey soil with lime, it is necessary to determine the required quantities of lime firstly and to evaluate the degree of stabilization with lime content. In this test, the quantity of lime required for 2 clayey soils which located in Seunggok and Bugok province respectively, and for 2 clay minerals-kaolinite and montmorillonite-were determined by ASTM C 977-92 and were evaluated for solidification of each samples with changing lime contents by Atterberg limit test and pH test. It was also evaluated for the improvement of each sample with lime content and curing time. The sample which added lime content determined by ASTM C 977-92 increased plastic limit, unconfined compression strength, and decreased pH in increasing trend.

  • PDF

Applicability Test of Various Stabilizers for Heavy Metals Contaminated Soil from Smelter Area (제련소 주변 오염토양의 중금속 안정화를 위한 다양한 안정화제의 적용성 연구)

  • Jeon, Jonwon;Bae, Bumhan;Kim, Younghun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.63-75
    • /
    • 2010
  • There are several remediation technologies for heavy metal contaminated soils but increasing cost limits the application of the technology if the contaminated area is large. Therefore, stabilization, which blocks the release of heavy metals or makes slow the release, is one of the applicable technology for the heavy metal contaminated soil. Current study is an applicability test for a smelter area with various stabilizer such as magnetite, hematite, zeolite-A, zeolite-X, zeolite-Y, zinc oxide, calcium oxide, carbon trioxide, manganese oxide, manganese dioxide, fish bone, sodium phosphate. The soil contaminated with arsenic, lead, copper, nickel, and zinc could not be stabilized only one stabilizer which is known to have stability for certain metal. Many of the stabilizer works for a few metal but not all of the heavy metal. In several cases, stabilizers increase the release of the other metals while they stabilize some metals. In general, the stabilizing efficiency was increased with time. For Ni, Pb, calcium oxide, carbon trioxide, manganese oxide had good stabilizing effect in water extractable portion. For Cu, manganese oxide, zeolite showed good results especially in the exchangeable portion of the sequential extraction. For As, magnetite had good ability but most of the metal oxide which showed good result for other heavy metals increased with the release of As. Current study suggest that multiple stabilizers are needed for the contaminated soil and dose of the stabilizer and stabilizing time should be carefully considered for the soil contaminated with various metals.

Experimental and Numerical Investigation of the Performance of Vertical Thermosyphon for Frozen Ground Stabilization (실험과 수치해석을 통한 동토지반 안정화용 수직형 열사이펀의 성능평가)

  • Lee, Jangguen;Lee, Chulho;Jang, Changkyu;Choi, Changho
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.4
    • /
    • pp.45-56
    • /
    • 2014
  • Frozen ground in cold region consists of an upper active layer and lower permafrost which is permanently frozen land. During the summer season, the air temperature is high enough to make the frozen ground melt, which causes the reduction of soil strength and thaw settlement. These phenomena result in structural instability, so it is necessary to apply frozen ground stability techniques. Thermosyphon is a closed natural two-phase convection device to maintain the ground temperature below $0^{\circ}C$ by extracting heat from the ground and discharges it into the atmosphere. Experimental and numerical investigation has been performed to estimate the effect of the refrigerant filling ratio in thermosyphon using R-134a refrigerant and the thermal conductance of the thermosyphon.

Frost Heave of Frost Susceptible Soil According to Performance of Thermo-syphon (열 사이펀 성능에 따른 동상민감성 지반의 거동 비교)

  • Park, Dong-Su;Shin, Mun-Beom;Seo, Young-Kyo
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.10
    • /
    • pp.27-40
    • /
    • 2021
  • The construction method to prevent the frost heave or thaw settlement is called the ground stabilization method, and the thermo-syphon is one of the typical ground stabilization methods. The thermo-syphon has recently been developed with a simple analysis model and thermal analysis has been carried out, but the frost heave of frost susceptible soil was not considered. This study was conducted using ABAQUS internal user subroutine to develop the numerical analysis model (Coupled thermo-mechanical) that can simultaneously perform thermal analysis for the temperature change of the soil according to the thermo-syphon and structural analysis to predict the frost heave of the soil accordingly. As a result of the numerical analysis, the frost heave of the soil decreased as the performance of the thermo-syphon increased. As for the main results, when the thermo-syphon which has contain 25%, 50%, and 100% of refrigerant filling ratio was applied, the reduction ratio of the frost heave was 5.5%, 14.4%, and 21% respectively.