• Title/Summary/Keyword: 지반설계정수

검색결과 158건 처리시간 0.101초

An Analysis of Elastic Moduli Behaviors of Uniaxial Compression under Loading-Reloading Test (I) (일축압축하에서 반복재하에 따른 탄성정수의 거동분석(I) -경상분지 퇴적암을 대상으로-)

  • Lee, Jong-Suck;Moon, Jong-Kyu;Choi, Woong-Eui
    • Journal of the Korean Geotechnical Society
    • /
    • 제28권8호
    • /
    • pp.65-78
    • /
    • 2012
  • Elastic moduli and behavioral characteristics changes of very widely according to stress level resulting from uniaxial compressive test of sedimentary rock. This means that elastic moduli do not indicate constants but variables. More appropriate and reasonable outcome will be accepted through loading-reloading test in design and construction progress. An attention for behavioral characteristics of elastic moduli shown in low level of stress should be paid.

Evaluation of Consolidation Characteristics Considering the Mixed Gradation Ratio of Soft Ground (연약지반의 입도 혼합비를 고려한 압밀특성평가)

  • Park, Yeong-Mog;Yun, Sang-Jong;Chea, Jong-Gil
    • Journal of the Korean Geotechnical Society
    • /
    • 제25권10호
    • /
    • pp.99-110
    • /
    • 2009
  • In order to provide the design criteria, the characteristics of consolidation for soft ground improvement have been investigated using the field banking test performed by the vertical drain method at the northern container section in Busan New Port. Field test results indicated that the estimated degree of consolidation in design stage decreased by about 7% compared with the measured one. This difference is attributed to the fact that the conservative geological properties were applied with relatively high amount of maximum clay mixture ratio during the design stage. Based on this findings, another laboratory oedometer test was implemented to consider various combination of mixture ratio. It was found that the consolidation degree increased in accordance with the increase of sand/silt mixture ratio. Also, the proportion of 10%, 50%, and 40% for sand, silt, and clay, respectively, was observed as the best combination of mixture ratio to the actual measurement, which is very similar to the average grain size distribution in the banking test area. Therefore, it is suggested that the overall geological characteristics as well as the grain size distribution should be considered in design stage to improve the soft ground that contains mixture of sand, silt, and clay.

Effect of hydraulic lining-ground interaction on subsea tunnels (라이닝-지반 수리상호작용이 해저터널에 미치는 영향)

  • Shin, Jong-Ho;Park, Dong-In;Joo, Eun-Jung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제10권1호
    • /
    • pp.49-57
    • /
    • 2008
  • One of the most important design concerns for undersea tunnels is to establish design water load and flow rate. These are greatly dependent on the hydraulic factors such as water head, cover depth, hydraulic boundary conditions. In this paper, the influence of the hydraulic design factors on the ground loading and the inflow rate was investigated using the coupled finite element method. A horse shoe-shaped tunnel constructed 30 m below sea bottom was adopted to evaluate the water head effect considering various water depth for varying hydraulic conditions and relative permeability between lining and ground. The effect of cover depth was analysed for varying cover depth with the water depth of 60 m. The results were considered in terms of pore water pressure, ground loading and flow rate. Ground loading increases with an increase in water head and cover depth without depending on hydraulic boundary conditions. This points out that in leaking tunnels an increase in water depth increases seepage force which consequently increases ground loading. Furthermore, it is identified that an increase in water head and cover depth increases the rate of inflow and a decrease in the permeability ratio reduces the rate of inflow considerably.

  • PDF

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • 제21권5호
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

Prediction of Deformation Behavior of a Shallow NATM Tunnel by Strain Softening Analysis (연화모델을 이용한 저토피 NATM 터널의 변형거동의 예측)

  • Lee, Jae-Ho;Shinich, Akutagawa;Kim, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • 제23권9호
    • /
    • pp.17-28
    • /
    • 2007
  • Urban tunnels are usually important in terms of prediction and control of surface settlement, gradient and ground displacement. This paper has studied the application of strain softening analysis to predict deformation behavior of an urban NATM tunnel. The applied strain softening model considered the reduction of shear stiffness and strength parameter after yielding with strain softening effects of a given material. Measurements of surface subsidence and ground displacement were adopted to monitor the ground behavior resulting from the tunneling and to modify tunnel design. The numerical analysis results produced a strain distribution, deformational mechanism and surface settlement profile, which are in good agreement with the results of case study. The approach of strain softening modeling is expected to be a good prediction method on the ground displacement associated with NATM tunneling at shallow depth and soft ground.

Study on Electrical Resistivity Pattern of Soil Moisture Content with Model Experiments (토양의 함수율에 따른 전기비저항 반응 모형 실험 연구)

  • Ji, Yoonsoo;Oh, Seokhoon;Lee, Heui Soon
    • Geophysics and Geophysical Exploration
    • /
    • 제16권2호
    • /
    • pp.79-90
    • /
    • 2013
  • Geophysical investigation in non-destructive testing is economically less expensive than boring testing and providing geotechnical information over wide-area. But, it provides only limited geotechnical information, which is hardly used to the design. Accordingly, we performed electrical resistivity experiments on large scale of soil model to analyze the correlation between electrical resistivity response and soil water contents. The soils used in the experiments were the Jumunjin standard sand and weathered granite soil. Each soil particle size distribution and coefficient of uniformity of experimental material obtained in the experiments were maintained in a state of the homogeneous. The specifications of the model used in this study is $160{\times}100{\times}50$(cm) of acrylic, and each soil was maintained at the height 30 cm. The water content were measured using the 5TE sensors (water contents sensors) which is installed 7 ~ 8 cm apart vertically by plugging to floor. The results of the resistivity behavior pattern for Jumunjin standard sand was found to be sensitive to the water content, while the weathered granite soil was showing lower resistivity over the time, and there was no significant change in behavior pattern observed. So, it results that the Jumunjin standard sand's particle current conduction was better than the weathered granite soil's particle through contact with the distilled water. This lab test was also compared with the result of a test bed site composed of similar weathered soil. It was confirmed that these experiments were underlying research of non-destructive investigation techniques to improve the accuracy to estimate the geotechnical parameter.

Friction Features of Geosynthetics Through the Pullout Test (인발실험을 통한 토목섬유의 마찰특성 평가)

  • Shin, Eun-Chul;Yun, Sock-Ho
    • Journal of the Korean Geosynthetics Society
    • /
    • 제2권1호
    • /
    • pp.3-13
    • /
    • 2003
  • Recently, construction of the reinforced earth structures, which adopts reinforcing materials of geosynthetic, is rapidly increasing due to its good economic advantages, beautiful appearance, and convenient construction. Nonetheless, the most important factor of interpretation and design of the reinforced earth structures, which is assessment ways of friction features between earth and geosynthetic, has not been standardized yet. It has great difference of interpretation and design methods which suggested to the design engineer. This study is to present the way how to assess more reasonably friction features between geogrid and weathered granite soil through the pullout test. Based on a large-scale pullout test of geogrid, the maximum shear stress, interface fricton angle, and friction efficiency are presented with consideration of various test condition.

  • PDF

A Case Study of Back-analysis Technique in Tunnelling Using Extended Bayesian Method and Relative Convergence Measurement (확장 Baysian 방법과 상대변위를 이용한 터널 역해석 기법의 적용사례연구)

  • Lee In-Mo;Choi Min-Kwang;Cho Kook-Hwan;Lee Geun-Ha;Choi Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • 제21권3호
    • /
    • pp.109-118
    • /
    • 2005
  • It is a very difficult task to estimate engineering properties of the ground when designing underground structures, especially in tunnelling. Therefore, a feed-back system to combine the data measured in construction field with priorly estimated information at the design stage is necessary. In this paper, 3-dimensional back-analysis in tunnelling, to which only relative convergence is applied as input values, is carried out to estimate the optimum geotechnical parameters. For this purpose, the Extended Bayesian Method (EBM), which appropriately combines the objective information with the subjective one, is applied to optimize engineering parameters and 3-dimensional numerical analysis is carried out to predict a trend of relative convergence occurrence. The data measured from two tunnelling sites are used to verify the applicability of the proposed back-analysis technique. from the results of analysis, the proposed back-analysis technique is verified.

A study on failure probability characteristic based on the reliability analysis according to the variation of boundary conditions (신뢰성 기반 쉴드터널의 경계조건 변화에 따른 파괴확률 특성에 관한 연구)

  • Gyu-Phil Lee;Young-Bin Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • 제25권6호
    • /
    • pp.447-458
    • /
    • 2023
  • In this study, a comparison model considering the stochastic characteristics of the load and member resistance of the shield tunnel segment lining as well as the variability of the boundary condition was selected and reliability analysis was performed, and the adequacy of the limit state design was analyzed by calculating the probability of failure and reviewing the structural safety. For the analysis considering the probability characteristics of these ground constants, the ground spring coefficient was considered as the mean value by calculating the quantitative value by applying the Muirwood formula, and the coefficient of variation was selected based on the existing research data to review the models according to the change of ground boundary conditions. Through the structural analysis of these models and the reliability analysis using MCS technique, the failure probability and reliability index were calculated to examine the changes in the failure probability due to changes in ground boundary conditions.

Design for Installation of Suction Piles in Sand Deposits for Mooring of Floating Offshore Structures (부유식 해상구조물의 계류를 위한 사질토 지반의 석션파일 설계)

  • Park, Chul-Soo;Lee, Ju-Hyung;Baek, Du-Hyun;Do, Jin-Ung
    • Journal of the Korean Geotechnical Society
    • /
    • 제30권10호
    • /
    • pp.33-44
    • /
    • 2014
  • The preliminary design of suction pile as the supporting system for concrete floating structures was performed for the pilot project of the southwest coast area in Korea. Prior to starting design work, site conditions of the area including ground and hydraulic conditions, and a 100-year return period external force were throughly evaluated. The suction pile for mooring of the offshore floating structures has to satisfy the lateral resistance against external force as well as the penetration ability according to the soil conditions such as soil types, shear strengths, effective stresses, and seepage forces. In the design, the required penetration depths, which were stable for lateral resistance, were evaluated with the diameters of cylindrical suction pile as the final installing ones. And the design suction pressures at each penetrating depths, at which sand boiling did not occur, were assessed through the comparison of penetration and penetrationresistance forces. As a result, it was impossible for suction piles with the diameter range of 3.0~5.0 m to penetrate into required penetration depths. On the other hand, suction piles with the diameter range of 6.0 m and 7.0 m satisfied both the horizontal stability and the penetration ability by design suction pressures at the required penetration depths of 8.5 m and 8.0 m, respectively.