• Title/Summary/Keyword: 지반구조물 계측센서

Search Result 19, Processing Time 0.023 seconds

Improvement of Domestic Design Criteria of Tunnel Maintenance Monitoring and Latest Technology Trend (터널 유지관리 계측의 국내설계기준 개선 및 최신 기술동향)

  • Baek, Kyung Jong;Kwon, Young Eok
    • Journal of Korean Society of Disaster and Security
    • /
    • v.7 no.2
    • /
    • pp.9-16
    • /
    • 2014
  • Though the maintenance monitoring of structurally weak parts of the tunnel structure in public service must be judged in connection with the monitoring during the construction period for analysis of the behavior of the ground and surrounding structures following the tunnel excavation for the effective management, the monitoring during the construction period and the maintenance monitoring are implemented separately on the basis of the periods of construction and maintenance, so the connectivity and systematic management of the related data are mostly inadequate. The improvement direction is suggested in this thesis, by analyzing the problems of tunnel monitoring in the domestic design criteria. And, it is anticipated that from now on the use of hi-tech sensors and wireless communications technology will proceed vigorously in the maintenance, so considering these situations, the development and application of the maintenance monitoring system and the revision of the domestic design criteria and specification are needed in the future.

A Study of Applicability of Monitoring System through Polar Environment around the King Sejong Station, Antarctica (극지환경을 고려한 남극 세종과학기지 계측시스템 적용성에 관한 연구)

  • Park, Keunbo;Kim, Young Seok
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.2
    • /
    • pp.43-53
    • /
    • 2013
  • Environmental monitoring analysis were analyzed for the period from 1988 to 2007 near King Sejong Station. Extreme environment structure behaviors(Marine Biology Lab.) were evaluated using monitoring sensors developed commercial sensors. Also when installing the sensors ambient environment of the King Sejong Station, to analyze the measured data and the comparative behavior of the structure were analyzed. As a environmental monitoring analysis result at King Sejong Station temperature, sensors were installed to withstand about $-25.6^{\circ}C$ or less and 49.5m/s. They were needed that the height of 225.0cm or more to be installed during the installation. For several monitoring sensors used in Antarctic, temperature, snow and strong winds were very sensitive to the atmospheric environment. Quite often a camouflage(animals and humans) would make it necessary to provide housing for monitoring sensors. Therefore, protection system developed for these sensors were to protect the sensors and data logger. Protection system the newly developed, is economical, easy to install even in harsh environments. Based on the measurement result of the one year, consider electrode applicability of the protection system, it was confirmed that the behavior of the structure is also predictable.

Monitoring System of Rock Mass Displacement and Temperature Variation for KURT using Optical Sensor Cable (광섬유센서케이블을 이용한 지하연구시설의 지반변위 및 온도변화 감시시스템 구축)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.63-70
    • /
    • 2009
  • The optical fiber cable acting as a sensor was embedded in the underground research tunnel and portal area in order to monitor their stability and the spatial temperature variation. This system includes two types of sensing function to monitor the distributed strain and temperature along the line, where sensor cable is installed, not a point sensing. According to the results of one year monitoring around the KURT, there is no significant displacement or movement at the tunnel wall and portal slope. However, it would be able to aware of some phenomena as an advance notice at the tunnel wall which indicates the fracturing in rockmass and shotcrete fragmentation before rock falls accidently as well as movement of earth slope. The measurement resolution for rock mass displacement is 1 mm per 1 m and it covers 30 km length with every 1m interval in minimum. In temperature, the cable measures the range of $-160{\sim}600^{\circ}C$ with $0.01^{\circ}C$ resolution according to the cable types. This means that it would be applicable to monitoring system for the safe operation of various kinds of facilities having static and/or dynamic characteristics, such as chemical plant, pipeline, rail, huge building, long and slim structures, bridge, subway and marine vessel. etc.

A Study on Measurement of Penetration Depth of Steel Pipe Using the Impact-Echo Method (충격탄성파법에 의한 강관구조물 근입깊이 측정에 관한 연구)

  • Lee, Sang Hun;Kumagai, Takayuki;Endo, Takao;Han, Youn Hee
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.89-89
    • /
    • 2011
  • 도로의 가드레일 지주 근입깊이의 부족에 의한 자동차의 전락사고 이 후, 일본의 국토교통성 등의 관계자들이 그 대책 세우기에 부심해 왔으나, 기설 지주의 근입깊이를 측정할 수 있는 방법은 아직까지 알려져 있지 않으며, 현재로서는 작업의 전 과정을 비디오로 촬영하여 그 기록을 남기도록 되어있다. 그러나 그것은 상당히 비효율적인 작업으로 엄밀한 감시기능을 다하지 못하고 있으며, 감독자와 시공자의 양자로부터 계측 도구의 개발이 절실히 요구되고 있다. 일부의 초음파 측정기 업자가 가드레일 지주의 근입깊이를 측정할 수 있다고 주장하고 있으나, 시장에는 아직 나타나지 않고 있으며, 그 측정시스템의 측정여부와 성능의 검증이 이루어지지 않고 있는 상황이다. 지금까지 충격탄성파법 또는 초음파법을 이용하여, 매설된 가드레일 지주의 근입깊이를 측정한 성공사례가 정식으로 보고된 바는 없으며, 같은 강관주인 눈사태 방지책의 지주 파이프에 대한 근입깊이의 측정은 본 연구그룹의 의해 행하여진 바가 있다. 검사봉이나 해머 등으로 대상물을 두드려서 탄성파를 발생시키고, 그것을 가속도계 또는 속도계의 진동센서로 감지하여 그 파형을 분석함으로써 대상물의 치수 등을 측정하는 충격탄성파법은, 특히 콘크리트를 대상으로 공동 및 매설물 등의 탐사, 균열깊이의 측정 등에 폭 넓게 사용되고 있다. 하지만 이 측정방법을 가드레일의 지주의 근입깊이 측정에 적용할 경우, 일반적으로 행하여지는 방법, 즉 진동센서를 대상물의 상단부(캡)에 설치하는 방법으로는 접합부에 의한 탄성파의 손실과 캡의 휨 진동에 의한 노이즈 등을 해결하기가 곤란해진다. 또한 지반의 존재로 인한 진동 모드의 변화와 진동에너지의 감소 등의 문제점을 해결하지 않으면 안 된다. 본 연구는 충격탄성파법을 이용하여 지반에 설치된 눈사태 방지책이나 가드레일의 지주와 같은 강관 구조물의 근입깊이를 측정하고자 하는 연구이다. 이를 위해 진동센서를 캡이 아닌 측면부에 취부장치를 이용하여 설치함으로써 길이방향의 탄성파를 측정할 수 있도록 하고, 실제 구조물에 대해 측정을 실시하여 그 측정시스템의 성능과 유용성을 검토하고자 한다. 또한 다양한 길이의 실험용 강관 파이프를 매설하고 측정실험을 실시하여 측정시스템의 적용성에 대해서도 검토하였다. 본 연구를 통하여, 수신센서를 파이프의 측면에 선접촉하게 함으로서 종파를 감지하여 근입깊이를 포함한 파이프의 전 길이를 측정하는 본 측정시스템은 매설된 강관 구조물의 길이 측정에 기본적으로 적용 가능함을 확인할 수 있었다. 특히 오거 굴착으로 시공된 경우에는 높은 정도의 측정성능을 보여주었다. 또한 항타관입 파이프에 대해서는 지반의 영향을 고려함으로써 길이의 측정이 가능하다는 것을 확인할 수 있었다. 즉, 오거 굴착 또는 항타 관입 등 시공방법에 따라 측정결과에 대한 지반의 영향 정도가 달라지며 파형 분석 및 길이 산정시 그 영향을 고려하여야 함을 확인하였다.

  • PDF

Analysis of pile load distribution and ground behaviour depending on vertical offset between pile tip and tunnel crown in sand through laboratory model test (실내모형시험을 통한 사질토 지반에서 군말뚝과 터널의 수직 이격거리에 따른 하중분포 및 지반거동 분석)

  • Oh, Dong-Wook;Lee, Yong-Joo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.355-373
    • /
    • 2017
  • Tunnelling in urban areas, it is essential to understand existing structure-tunnel interactive behavior. Serviced structures in the city are supported by pile foundation, since they are certainly effected due to tunnelling. In this research, thus, pile load distribution and ground behavior due to tunnelling below grouped pile were investigated using laboratory model test. Grouped pile foundations were considered as 2, 3 row pile and offsets (between pile tip and tunnel crown: 0.5D, 1.0D and 1.5D for generalization to tunnel diameter, D means tunnel diameter). Soil in the tank for laboratory model test was formed by loose sand (relative density: Dr = 30%) and strain gauges were attached to the pile inner shaft to estimate distribution of axial force. Also, settlements of grouped pile and adjacent ground surface depending on the offsets were measured by LVDT and dial gauge, respectively. Tunnelling-induced deformation of underground was measured by close range photogrammetric technique. Numerical analysis was conducted to analyze and compare with results from laboratory model test and close range photogrammetry. For expression of tunnel excavation, the concept of volume loss was applied in this study, it was 1.5%. As a result from this study, far offset, the smaller reduction of pile axial load and was appeared trend of settlement was similar among them. Particulary, ratio of pile load and settlement reduction were larger when the offset is from 0.5D to 1.0D than from 1.0D to 1.5D.

Study of Confidence Ranges for Field Phase Difference Measurement Data Collected using Geophones (지오폰을 활용한 현장 위상각차 계측 데이터 신뢰 구간에 관한 기초 연구)

  • Kim, Gunwoong
    • Journal of the Korean Geotechnical Society
    • /
    • v.40 no.3
    • /
    • pp.41-54
    • /
    • 2024
  • Regular monitoring plays a crucial role in ensuring the safety of geotechnical structures. Currently, nondestructive methods are employed to monitor such structures to minimize the impact, e.g., sensor-based accelerometers, displacement meters, image-based lasers, and drone imaging. These technologies can observe surface changes; however, they frequently suffer difficulties in terms of identifying changes in internal properties. To monitor changes in internal properties, in situ geotechnical investigations can be employed. A nondestructive test that can be used for this purpose is the spectral analysis of surface wave (SASW) test using geophones. The SASW test is a nondestructive method; however, due to the time required for data interpretation and the difficulty in analyzing the data, it is challenging to use the SASW test for monitoring applications that require frequent observations. However, it is possible to apply the first-step analysis, which yields the dispersion curve, for monitoring rather than the complete SASW analysis, which yields the shear wave velocity. Thus, this paper presents a fundamental study on the phase difference that derives the dispersion curve to utilize the SASW test for monitoring. The reliability of each phase difference interval is examined to determine the boundary to the subjected monitor. The study used phase difference data obtained using a geophone from a single-layered, homogeneous ground site to evaluate reliable boundaries. The findings of this study are expected to improve the utility of monitoring by identifying the ideal boundary for phase difference data.

Control Method of Adaptive Duty-cycling for Monitoring System in Excavations (굴착현장 모니터링 시스템을 위한 적응적인 듀티사이클링 제어 기법)

  • Kim, Taesik;Min, Hong;Jung, Jinman
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.6
    • /
    • pp.141-146
    • /
    • 2016
  • Geotechnial engineering projects that requires excavation activity can cause massive ground deformation and this can damage adjacent structures. Depending on the engineering characteristics of ground material and the excavation depth, the ground movement is various. To overcome this issue, the ground deformation is monitored by multiple sensors. Typically, an inclinometer is installed behind the support wall. In this paper, we present an adaptive duty-cycling control mechanism using wireless sensors for monitoring ground deformation in excavations. The proposed mechanism dynamically adjusts the sleep time based on the urgency degree of sensed data from inclinometer. Through analytical evaluation of expected latency time, we confirm our adaptive duty-cycling mechanism has lower latency compared with periodic duty-cycling mechanism under variable conditions.

Experimental and Field Investigations for the Accuracy of the Frost Depth Indicator with Methylene Blue Solution (실내실험과 현장실험을 통한 Methylene Blue 동결깊이 측정장치 신뢰성 검토에 관한 연구)

  • Kim, Hak Seung;Lee, Jangguen;Kim, Young Seok;Kang, Jae-Mo;Hong, Seung-Seo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.3
    • /
    • pp.75-79
    • /
    • 2013
  • The frost depth is one of important factors in the design of structures such as roadways, buried pipeline, and foundations. A frost indicator with methylene blue solution has several advantages with respect to installation cost, maintenance, and simple measurement. However, as a geotechnical engineering aspect, the accuracy of the frost indicator has not been proved yet. This paper presents experimental and field investigations of the accuracy of the frost indicator and contour maps of maximum frost depth. The contour maps of maximum frost depth can be applied to design geo-infrastructure in South Korea.

Assessment on the Monitoring System for KURT using Optical Fiber Sensor Cable (광섬유센서케이블을 이용한 지하처분연구시설의 감시시스템 운영 평가)

  • Kim, Kyung-Su;Bae, Dae-Seok;Koh, Yong-Kwon;Kim, Jung-Yul
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.293-301
    • /
    • 2010
  • Optical fiber cable, as a sensor, was installed on the wall of KAERI(Korea Atomic Energy Research Institute) Underground Research Tunnel(KURT) in order to monitor the physical stability of the tunnel, which was constructed for technical development and demonstration of radioactive waste disposal. This monitoring system has two simultaneous measurements of temperature and strain over time using Brillouin backscatter. According to the results of the monitoring from Jan. 2008 to Nov. 2009, there is no significant displacement or movement at the tunnel wall However, the cumulative volume of total strain increased slightly as time passes with the comparison of the reference observation, which was measured in Jan. 2008. The change in cumulative volume of total strain indicates that the strain level had been affected by saturation and de-saturation phenomena due to groundwater fluctuation at several points at KURT. This system is based on the distributed sensing technique concept, not point sensing. By using this system, a displacement can be detected with the range from $20{\mu}{\varepsilon}$ to $28,000{\mu}{\varepsilon}$ every 1m interval in minimum. A temperature variation can be monitored at every 0.5m interval with the resolution of 0.01 in minimum. Based on the study, this monitoring system is potentially applicable to long term monitoring systems for radioactive waste disposal project as well as other structures and underground openings.