• Title/Summary/Keyword: 지반강도

Search Result 1,954, Processing Time 0.027 seconds

Filed Applicability Evaluations of Restoration Material for Underground Cavities Formed by Ground Subsidence (지반침하로 인한 지하공동 복구재료의 현장적용성 평가)

  • Bang, Seongtaek;Baek, Seungju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.21 no.3
    • /
    • pp.5-11
    • /
    • 2020
  • Recently, ground pits that have been occurring frequently in urban areas are hindering traffic flow and causing property damages and loss of human life, acting as factors that are threatening the safety of citizens. Therefore, sunken ground must be quickly restored and provisions must be made for additional damage but current domestic detailed standards regarding ground pits and accurate definitions regarding causes and measures to be taken for reoccurrences are lacking. Restoration methods of sunken ground include backfilling by reusing sunken soil or other fill material and paving the road and while this is the most often used method, this only prevents ground from sinking temporarily and can not serve as a fundamental solution. Also, additional ground pits can occur on ground that is reinforced using this method due to faulty backfill material or faulty hardening. This study used Eco-friendly High-Strength Material (EHSM) as restoration material that can be used in the restoration of underground cavities that have occurred due to ground subsidence to analyze the engineered characteristics of modified dredging clay and test pieces made from changed ratios of EHSM and weathered granite soil were uniaxial compression tests were conducted and freezing-thawing tests were conducted to study strength properties according to environmental changes of restoration material, and after tests were concluded by each level, uniaxial compression tests and dynamic elasticity tests were conducted for intensity analysis. Also, to evaluate strength characteristics of the restored ground, dynamic plate load tests were conducted to verify the improvement effectiveness of the restored ground.

A Study on the Estimation and Application of Failure Coefficients of Rock (암석의 파괴조건계수 평가 및 적용성에 관한 연구)

  • 장명환;양형식
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.103-116
    • /
    • 1998
  • To estimate pure shear strength, 150 sets of triaxial test data were analyzed. The proportional coefficient of shear strength($I_c$) at zero normal stress was nonlinearly decreased as failure coefficient m increases, while the internal friction $\phi_0$ at zero normal stress was nonlinearly increased. The ratio of shear strength $(c/\phi_0)$was inversely proportional to the ratio of the internal friction angles$(\phi/phi_0)$ The shear strength decreased as m increased, while internal friction angle increased. And uniaxial strength was proportional to $c,\phi$ Regression analysis showed that shear strength strongly affects m and $\sigma_c$ The proportional coefficient of shear strength was nonlinearly increased with RMR, while the internal friction angle $(\phi}$was linearly decreased.

  • PDF

Characteristics of Undrained Shear Strength and Development of Modified SPT on Very Soft Ground in Korea (국내 초연약지반의 비배수전단강도 특성 및 개량표준관입시험기 개발)

  • Jung, Hyuksang;Cho, Changkoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.6
    • /
    • pp.105-115
    • /
    • 2009
  • In this study, SPT, FV, and CPT tests were performed at five very soft grounds in southern coast of Korea to characterize the $S_u$ of very soft ground. In addition, a new modified SPT that is applicable to very soft ground was developed. Tests results showed that in very soft ground (N<2), the $S_u$ was lower than 12.5 kPa using the empirical N-Su correlation, and lower than 50 kPa and 65 kPa using vane shear test and CPT, respectively. It was shown that the results of in-situ tests were higher than those estimated from the N-Su correlation, and it was also demonstrated that the range of estimated $S_u$ was quite wide. New correlations that relate the modified SPT $N_m$ with Su from FV and CPT were developed, which are $S_u=1.76N_m-10.47$ and $S_u=1.82N_m-9.71$, respectively.

  • PDF

Shear Strength Evaluation of Composite Colluvial Soil (토질구성이 다양한 붕적층의 합리적인 전단강도 평가방법)

  • Lee, Kang-Il;Kang, Jun-Ho;Kim, Tae-Hoon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.25-34
    • /
    • 2009
  • Determination of design parameters of composite ground including colluvial soil layer is far difficult because the maximum particle size of such a soil is remarkably large and particle distribution may vary from area to area. The stress-strain behavior of colluvial soils is in fact dependent upon the engineering characteristics at the boundary between coarse and fine materials. However, strength parameters are in general determined based on the characteristics of fine material, which causes an underestimation of such parameters. In this study, strength parameters of colluvial soil are evaluated by means of BIMROCK model curve. In addition, limit equilibrium analysis is carried out to verify the rational shear strength evaluation.

  • PDF

Improvement Effects of Soft Clay Soils Using Quick Lime Piles (생석회 말뚝을 이용한 연약점토지반의 개량효과)

  • Kim, Younghun;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.5
    • /
    • pp.45-51
    • /
    • 2010
  • This study is to evaluate an application of technology to the soft ground stability using quick lime pile in the field. We investigated properties of Korean quick lime by conducting loading test and theoretical consideration about a principle and property of soft ground improvement by quicklime. According to the test results, it was estimated that quick lime pile method has dehydration effect by absorption of quick lime, consolidation effect by swelling of pile, increasing bearing by strength of pile itself and decreasing sinking effect, etc. A material property of quick lime is favorable for construction and considerable strength. In the case of higher strength is required, using cement as additive would increase material strength.

A Constitutive Model for Cemented Clay in a Critical State Framework (한계상태이론을 이용한 시멘트 고화처리 점토에 대한 구성 모델)

  • Lee, Song;Lee, Kyu-Hwan;Yi, Chang-Tok;Jung, Dae-Suk
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.1
    • /
    • pp.119-129
    • /
    • 2001
  • 연약지반 개량을 위한 시멘트의 사용은 깊은 심도의 점토 지반을 개량하는데 일반적으로 사용되는 기술이 되었다. 시멘트는 지반의 강도를 증가시키고 압축성을 감소시키는 역할을 한다. 시멘트-흙 혼합물의 강도 증가에는 여러 가지 요소가 있는데 이중 대표적인 것은 시멘트량, 흙의 종류, 함수비, 양생시간 등을 들 수 있다. 시멘트 첨가량이 적은 경우, 전단 강도증가는 기본적으로 시멘테이션 효과로 인한 점착력의 증가에 의한 입자들간의 마찰력으로부터 발생한다. 이러한 거동은 과압밀된 흙의 거동과 유사함을 볼 수 있다. 시멘트량이 많은 경우, 강도 증가의 주원인은 입자간의 물리적 결합에 기인하는데 이는 연약한 암석과 비슷한 거동을 한다. 시멘트 고화처리 흙의 응력-변형 거동을 분석하기 위해 한계상태 이론을 적용하였다. 그리고, 토립자간의 시멘테이션 효과를 반영하기 위해 새로운 한계상태 파라메타를 도입하였으며 시멘트 고화처리 점토의 거동을 분석하기 위한 새로운 한계상태 모델을 제시하였다.

  • PDF