제조 산업은 국가 경제 성장의 원동력으로 그 중요성이 부각되고 있다. 이에 따라 제조 공정상에서 생성되는 제조 데이터 분석의 중요성 또한 조명 받고 있다. 본 논문에서는 PCB(Printed Circuit Board) 제조 공정에서 발생한 로그 데이터를 분석하여 PCB 상에서 빈번하게 발생하는 고장 영역에 대해서 작업자가 고장 영역을 직접 눈으로 볼 수 있도록 시각화하는 방법을 제안한다. 우선 고장 영역을 파악하기 위해서 PCB 공정 데이터 집합에 K-means, DB-SCAN 클러스터링 알고리즘을 적용하여 군집화 하였고, 두 알고리즘 중 더 정확한 고장 영역을 도출하는지 비교하였다. 또한 MVC(Model-View-Controller) 구조 시스템을 개발하여 실제 PCB 이미지 상에 클러스터링 결과를 출력하는 것으로 실제 고장영역을 눈으로 확인할 수 있도록 시각화하였다.
오늘날 멀티미디어 정보의 양이 매우 빠른 속도로 증가함에 따라 멀티미디어에 대한 효율적인 관리가 더욱 중요하게 되었다. 특히 동영상과 같은 이미지에서는 특정 이미지를 추출하여 필요한 이미지를 관리하고자 하는 욕구가 증가되어가고 있다. 본 논문에서는 멀티미디어 자료의 효과적인 색인화 및 검색을 위한 동영상 처리를 위한 여러 멀티미디어 의미정보 추출 방법 중 내용 기반 의미 정보 추출 방법을 이용하여 특정 이미지를 검색하고 추출된 이미지만 저장하는 알고리즘을 설계하였다. 입력 영상에서 RGB 정보를 추출한 후 동영상의 모든 프레임을 순차적으로 검사하면서 주 RGB 범위 군집화 방법을 통하여 구성 내용의 위치와 분포를 참조하여 일치여부를 파악하여 입력 영상과 일치하는 동영상을 저장하도록 하였다.
빅 데이터(Big Data)시대로 접어들면서 기존의 IT 환경에서 만들어진 알고리즘들은 하둡과 같은 분산 아키텍처에 그대로 적용할 수 없거나 효율이 떨어진다. 따라서, 맵리듀스와 같은 분산 프레임워크를 적용한 새로운 알고리즘들이 필요하다. 벡터 양자화에 많이 사용되는 Lloyd의 알고리즘도 맵리듀스를 사용하여 개발이 이루어지고 있다. 본 논문에서는 기존의 맵리듀스를 사용한 분산 VQ 코드북 생성 알고리즘을 수정하여 좀 더 빠른 분석 결과를 보일 수 있는 디컴바인드 분산 VQ 코드북 생성 알고리즘을 제안하였다. 제안하는 알고리즘을 빅 데이터에 적용한 결과 기존 방법보다 높은 성능을 보인 것을 확인할 수 있었다.
웹 상의 출판이 보편화 될수록 많은 데이터의 내용물들이 압축, 포맷, 편집 등 변형된 상태로 중복해서 존재하게 된다. 이러한 유사한 데이터들은 검색 시 속도나 검색률 등에 문제를 야기 시킬 수도 있으며, 반면에 특정 사이트에 문제가 발생할 경우 다른 사이트의 중복된 데이터를 제공해 줄 수도 있게 된다. 따라서 본 논문에서는 대규모 데이터베이스 상에 존재하는 비디오들 중에서 유사한 데이터들에 대한 정보를 사전에 감지할 수 있는 효율적인 방법을 제안한다. 본 연구에서는 비디오들을 직접 비교하는 대신 비디오를 대표하는 요약 비디오 영상을 만들고, 주성분 분석(PCA-principle component analysis) 기법을 적용하여 저차원 특징벡터 상에 군집화를 통해 유사 비디오들을 검출하였다. 실험을 통하여 제안하는 방법의 효율성과 정확성이 우수함을 보였다.
최근 컴퓨팅 환경의 급속한 발전으로 다양한 응용에서 다차원 데이터에 대한 활용이 증가되고 있다. 본 논문에서는 내용 기반 다차원 데이터 검색을 위한 벡터 관사 트리를 제안한다 제안하는 색인 구조는 공간 분할 방식과 벡터 근사화 기법을 이용하여 영역 정보를 표현하기 때문에 하나의 노드 안에 많은 영역 정보를 저장하여 트리의 높이를 감소시킨다 또한 다차원의 데이터 공간에 동적인 비트로 할당하여 다차원색인 구조의 문제점인 '차원의 저주 현상'을 해결한다. 또한 군집화된 데이터에 대해서 효과적인 표현 기법을 제공한다. 자식 노드의 영역 정보는 부모 노드를 기준으로 상대적으로 표현함으로서 좀더 정확한 영역을 표현할 수 있다. 제안하는 색인 구조의 우수성을 보이기 위해 실험을 통해 기존에 제안된 색인구조와의 비교 분석을 수행한다.
도서관 사서의 수많은 업무 중 도서 정리 업무는 사서가 일일이 정리해야 하는 일이기 때문에, 투입되는 인적·시간적 비용이 크다. 이러한 문제를 해결하기 위해 최근 인공지능 기술을 접목한 도서 정리 로봇에 관한 관심이 증가하고 있다. 본 연구에서는 도서 정리 로봇에 적용할 수 있는 다중경유지 최단 경로 알고리즘인 K-ACO 알고리즘을 제안한다. 제안하는 K-ACO 알고리즘은 하나의 로봇이 아니라 여러 대의 로봇을 가정하고 있다. 또한, K-ACO는 개미 알고리즘을 개선하여 K개의 군집을 만들고 각 군집 별 최단 경로를 제공해준다. 본 논문에서는 제안한 알고리즘의 성능 분석을 도서 정리 시간의 관점에서 실시하였다. 제안한 알고리즘인 K-ACO 알고리즘을 한 대학교 도서관에 적용하여 현재 도서 정리 알고리즘과 비교해 보았다. 시뮬레이션을 통해 제안하는 알고리즘은 도서 정리 업무를 치우치지 않고 공평하게 배분하여 궁극적으로 전체 일이 끝나는 시간을 확연히 줄일 수 있음을 알 수 있었다. 본 연구 결과를 통하여 제안한 알고리즘의 적용으로 도서 정리에 필요한 인적·시간적 비용을 절감하여 도서관 내 양질의 서비스 향상을 기대한다.
음원이 디지털화 되면서 쉽게 음악을 구매하고 들을 수 있게 되었다. 하지만 많은 음악 중에서 음악가, 장르, 제목, 앨범 타이틀 등 전통적인 음악 정보를 이용하여 사용자들이 자신의 취향에 맞는 음악을 찾는 데는 여전히 어려움이 있다. 이러한 어려움을 해소하기 위해 내용기반 음악검색과 감성기반 음악검색 방법 등이 제안되고 개발되고 있다. 본 논문에서는 이러한 어려움을 해소하기 위한 감성기반 음악 검색방법에서 다차원 벡터형태의 MPEG-7 저수준 오디오 서술자들의 감성기반 검색에서의 중요도를 결정하기 위한 새로운 방법을 제안하였다. 제안된 방법에서는 상호간에 대립되는 감성을 대표되는 음악들의 유사성을 다차원 서술자 관점에서 측정하고 이 유사관계를 러프 근사화와 군집 내/군집 간의 유사성 비율을 이용하여 서술자의 중요성을 결정한다. 중요성을 바탕으로 결정된 가중치는 여러 개의 오디오 서술자들의 유사성을 총체화하는데 이용되며 이를 활용하여 감성기반 음악검색을 수행한다. 제안된 방법은 내용기반 음악 검색을 기반으로 한 감성기반 음악검색 구조에서 실험한 결과 평균 검색 개수측면에서 기존의 휴리스틱 방법보다 좋은 검색 결과를 나타내었다.
본 논문은 얼굴 형상 인식을 위한 보다 안정적이며 조명 변화와 회전에 강인하게 얼굴 영역을 검출하며, 계산의 효율성과 검출 성능을 동시에 만족시키는 강인한 검출 알고리즘에 대해 제안한다. 제안한 알고리즘은 단일 카메라 환경에서 얼굴 형상을 입력정보로 사용하여 전처리 과정을 거쳐 얼굴 영역만을 분할한 후 자기 조직화 특징 지도(SOFM) 알고리즘을 이용하여 얼굴 형상을 인식하게 된다. 그러나 조명 변화에 민감하고 자유도가 큰 얼굴 영역을 정확히 인식하기란 쉽지 않으며 오차 범위도 크기 때문에 본 논문에서는 인식률을 높이기 위해 각각의 얼굴 형상에 대한 회전 정보를 데이터베이스화 한 후 주성분 분석을 적용하여 군집화 함으로서 인식오차를 줄였다. 또한 차원 축소로 인해 많은 계산량이 요구되지 않기 때문에 실시간 인식 시간도 줄일 수 있었다.
에너지 수확 모바일 센서 망에서 센서 노드간의 듀티-사이클 동기화는 매우 중요한 의미를 갖는다. 제한된 에너지를 효율적으로 사용하여 협력해야 하기 때문에 각 노드의 듀티-사이클이 서로 유사하게 동작되어야 한다. 이때 망을 구성하는 노드분포는 노드간의 연결뿐만 아니라 동기화에 의한 노드의 활동 시간, 그리고 망의 수명에 영향을 준다. 본 논문에서는 자기-동기화 듀티-사이클 기법을 적용한 에너지 수확 모바일 센서 망에서 망의 토폴로지를 변화시킨다. 단순 랜덤 토폴로지 망보다는 망이 담당하는 영역과 노드 밀집도에 따라서 노드의 분포를 균일하게 유지하는 알고리즘을 제시한다. 제시된 토폴로지 변환 알고리즘을 위하여 유체 흐름과 군집 분산 모델을 적용하고 에이전트 기반 모델링을 이용하여 성능분석을 시행한다. 또한 제안된 알고리즘을 자기-동기화 듀티-사이클 기반 모바일 센서 망에 적용하여 노드 간 동기화 특성이 강화되고 에너지 소비 편차의 감소를 확인한다.
뉴럴 디코딩은 뉴론이 발화한 스파이크 트레인으로부터 뉴론에 인가된 원 자극을 추정하는 작업을 말한다. 디코딩은 뉴론들끼리 어떻게 신호를 주고 받는 지를 이해함으로써 궁극적으로 뇌가 어떻게 정보처리를 하는 지 이해하는 기초적인 작업이다. 이 논문에서 우리는 3가지 뉴럴 디코딩 방법, 즉 빈도 디코딩, 시간 디코딩, 군집 디코딩 방법에 대해 설명하겠다. 빈도 디코딩은 자극에 대한 스파이크의 발화빈도 정보를 이용하여 자극을 복원하는 방법을 말한다. 역사적으로 가장 먼저 시도되었고 가장 간단한 디코딩 방법이다. 그러나 정수 개인 스파이크 개수로부터 빈도를 계산하는 과정에서 빈도자체가 불연속이고 양자화될 가능성이 높기 때문에 간단하고 정적인 자극이 아닌 경우 빈도 디코딩으로는 자극을 복원하기 어렵다는 한계를 가지고 있다. 시간 디코딩은 스파이크 발생 빈도가 아닌 개별 스파이크들의 발생시각을 이용한 디코딩 방법을 말하며 실제 빠르게 변화하는 자극의 경우 신경세포는 빈도 디코딩이 아니라 시간 디코딩을 통해 자극을 추정하는 것으로 이해되고 있다. 군집 디코딩은 단일 신경세포가 아닌 군집 신경세포로부터 자극을 복원하는 방법이다. 군집 디코딩은 단일 신경 세포 디코딩에 비해 신경 세포의 가변성에 따른 불확실성을 감소시킬 수 있고 서로 다른 자극의 특성을 동시에 표현할 수 있다는 장점을 갖는다. 이 논문에서는 먼저 세 가지 뉴럴디코딩 방법에 대해 소개하고 정보이론이 뉴럴디코딩에 어떻게 적용되는 지를 다룬 후 마지막으로 최근에 각광받고 있는 기계학습 방법에 의한 뉴럴 디코딩에 대해 다루도록 하겠다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.