• 제목/요약/키워드: 지도 군집화

검색결과 593건 처리시간 0.031초

특징 기반 움직임 플로우를 이용한 이동 물체의 검출 및 추적 (Moving object segmentation and tracking using feature based motion flow)

  • 이규원;김학수;전준근;박규태
    • 한국통신학회논문지
    • /
    • 제23권8호
    • /
    • pp.1998-2009
    • /
    • 1998
  • 본 논문에서는 배경의 움직임이 유발되는 능동 CCD 카메라를 통하여 실시간으로 포착되는 영상 데이터를 대상으로 카메라의 사전 설치 정보나 좌표 보정(calibration) 없이 강체(rigid body) 혹은 비 강체(non-rigid body)의 움직이는 물체를 추출하고 이의 이동 방향을 판단하여, 추적하는 효율적인 알고리즘을 제안한다. 이동 물체의 영역분할을 위하여 동체의 형태를 규정하는 특징 점을 추출하고, 시간에 따른 특징 점의 이동 벡터로 구성된 특정 플로우 필드(feature flow field)를 구한 후 이들을 다차원 특정 공간상에서 군집화(clustering)함으로써 동체를 추출한다. 제안하는 IRMAS(lncremenatal Rotational Minimum Angle Search)에 의하여 군집화된 특정점들의 볼록 다각형(convex hull)올 구함으로써 이동 물체의 개괄적인 외곽 형태를 재 구성한다. 또한, 이동 궤적의 갑작스러운 변화를 가져올 수 있는 동작 특성을 가지는 이동 물체의 효과적인 추적을 목적으로 개선된 선형 예측기를 사용하였다. 이동 궤적 예측기는 기존의 선형 예측기의 차수를 이동의 변화도에 따라 적응적으로 조정함으로써 예측 오차를 감소시켜, 빠른 속도로 이동 궤적에 수렴한다.

  • PDF

기계학습 알고리즘을 사용한 스포츠 경기장 방문객 마케팅 적용 방안 (A Study on Application of Machine Learning Algorithms to Visitor Marketing in Sports Stadium)

  • 박소현;임선영;박영호
    • 디지털콘텐츠학회 논문지
    • /
    • 제19권1호
    • /
    • pp.27-33
    • /
    • 2018
  • 본 연구에서는 마케팅 분야 중 스포츠 경기장을 찾는 관람객의 빅 데이터를 분석하여 소비자에게 맞춤형 마케팅 서비스를 제공하는 연구를 진행한다. 이를 위해 본 연구에서는 K-평균 군집화 방법을 사용하여 유사 관람객 그룹을 도출하고자 하며, K-근접 이웃 방법을 사용하여 새로운 방문객의 관심 매장을 예측하고자 한다. 실험 결과를 통해 상기 두 가지 알고리즘을 사용하는 것은 유사 관람객 그룹을 도출하며 신규 관람객 입장 시 신규 관람객의 특성에 맞는 적합한 마케팅 서비스를 제공 할 수 있게 하였다.

적응적 베이즈 영상분할을 이용한 경계추출 (Boundary Detection using Adaptive Bayesian Approach to Image Segmentation)

  • 김기태;최윤수;김기홍
    • 한국측량학회지
    • /
    • 제22권3호
    • /
    • pp.303-309
    • /
    • 2004
  • 영상의 밝기값과 텍스쳐 모두를 사용하여 대상물의 경계를 보다 정확하게 추출할 수 있는 적응적 베이즈 영상 분할기법을 C 프로그래밍 언어로 개발하였다. 사전확률밀도함수를 추정하기 위하여 깁스 분포 모델을 적용하였고, 조건확률밀도함수를 추정하기 위하여 퍼지 C-군집화 기법을 도입하였다. 추정된 두 확률밀도함수로부터 최대 사후주변확률이 산출되었고, 이를 시뮬레이션영상에 적용하여 99% 이상의 신뢰도를 획득하였다. 또한 개발된 알고리즘을 1963년 미 정찰위성사진을 이용하여 제작한 남극 정사영상에 적용하여 남극 전체 해안선에 대하여 최대 300미터 정확도를 갖는 벡터지도를 제작하였다.

개념간 관계의 추출과 명명을 위한 통계적 접근방법 (A Statistical Approach for Extracting and Miming Relation between Concepts)

  • 김희수;최익규;김민구
    • 정보처리학회논문지B
    • /
    • 제12B권4호
    • /
    • pp.479-486
    • /
    • 2005
  • 온톨로지는 차세대 시맨틱 웹을 위한 논리의 기반을 구성하기 위해 제안되었다. 이러한 온톨로지는 특정 분야에 대한 지식을 정형화된 형태로 표현함으로써 기계에 의한 지식의 이해를 가능하게 하고, 이를 사용하여 사용자의 요구에 알맞은 지능화된 서비스를 제공할 수 있게 한다. 하지만, 온톨로지의 구축과 유지는 많은 사람의 시간과 노력을 요구한다. 본 고에서는 온톨로지 구축 방법의 일환으로, 문서로부터 온톨로지를 구성하는 개념간의 관계를 정의하는 자동화된 방법을 제안한다. 본 고에서 제안된 방법은 특정 분야의 문서에 존재하는 개념을 기반으로 개념간의 연관 규칙을 형성하는 개념 쌍을 찾고, 두 개념 사이에 존재하는 내용의 군집화를 통해 두 개념간의 관계를 설명하는 패턴을 찾는다. 마지막으로 패턴간의 군집화를 사용하여 개념 사이의 일반화된 관계를 명시한다. 본 고에서는 제안된 방법을 검증하기 위한 방법으로 TREC(Text REtrieval Conference)에서 제공하는 문서집합을 사용하여 개념간의 관계를 추출, 평가하였으며, 그 결과 제안된 방법은 개념간의 관계를 설명하는 유용한 정보를 제공할 수 있음을 보여준다.

우리나라 기록관리학 분야의 연구영역 분석 - 논문제목의 구문 및 의미 구조를 중심으로 - (A Study on Intellectual Structure of Records Management and Archives in Korea: Based on Syntactic and Semantic Structure of Article Titles)

  • 김규환;장보성;이현정
    • 한국문헌정보학회지
    • /
    • 제43권3호
    • /
    • pp.417-439
    • /
    • 2009
  • 본 연구는 논문제목의 구문 및 의미구조를 기반으로 국내 기록관리학 분야의 연구영역의 특성을 분석하였다. 이를 위해 1999년부터 2008년까지 국내 기록관리학 분야 전문 학술지 3종으로부터 핵심 연구논문 344개를 선정하였다. 해당 연구논문의 제목을 대상으로 구문 및 의미 구조를 분석하여 논문제목에 포함된 키워드들의 역할개념으로 '연구도메인', '연구대상', '연구초점'을 추출하였다. 추출된 3개의 역할개념별로 키워드들을 배정하여 군집화 하였다. 군집화 결과를 통해 최종적으로 국내 기록관리학 분야에서 어떤 연구대상이 핵심 연구대상이며 핵심 연구대상은 어느 연구도메인에서 어떤 연구초점에 관심을 두고 있는지를 분석하였다.

개선된 ART2 알고리즘을 이용한 자가 질병 진단 시스템 (Self Disease Diagnosis System Using Enhanced ART2 Algorithm)

  • 김광백;우영운;김주성
    • 한국정보통신학회논문지
    • /
    • 제11권11호
    • /
    • pp.2150-2157
    • /
    • 2007
  • 본 논문에서는 개인의 건강 상태를 일련의 과정에 따라 스스로 파악하여 전문 의료 관리에 대한 접근 방향의 결정을 돕고 전문의가 쉽게 새로운 질병 및 증상을 학습 할 수 있도록 하는 자가 질병 진단 시스템을 제안하였다. 제안된 자가 진단은 보건 복지부에 제출된 #한국인이 부담을 가지는 질병# 관련 보고서와 의료 콘텐츠 #Engel Pharm#을 참조하여 선정한 60가지의 질병과 각 질병에 대한 대표 증상 161가지를 이용하여 질병을 도출한다. 개선된 ART2 학습 알고리즘을 적용하여 질병 종류를 군집화하고 각 질병의 증상에 관련된 질의 결과를 입력 벡터로 제시하여 사용자의 건강 상태를 진단함으로써 자신의 건강에 대한 정보를 제공한다.

메소드의 매개변수 리스트의 간소화를 위한 리팩토링 방안 (Removing Long Parameter List Using Semantic Matrix)

  • 함동화;이준하;박수진;박수용
    • 소프트웨어공학소사이어티 논문지
    • /
    • 제26권4호
    • /
    • pp.93-103
    • /
    • 2013
  • 소프트웨어의 규모는 시간이 지남에 따라 복잡성과 유지보수 비용이 증가한다. 이로 인해 최근 유지보수의 중요성이 더욱 대두되고 있다. 소프트웨어가 진화 할수록 유지보수를 어렵게 하는 징후인 코드의 나쁜 냄새(Bad Smell)가 점점 심해지기 때문에 나쁜 냄새가 나는 코드를 제거하여 유지보수를 용이하게 개선해야 한다. 최근에는 이러한 나쁜 냄새를 위해 소프트웨어 리팩토링 기법에 대한 연구가 많이 연구되고 있다. 본 논문에서는 나쁜 냄새의 한 종류인 긴 매개변수 리스트(Long Parameter List)를 식별하고 해결하여 소프트웨어의 유지보수성을 향상시키는 방안을 제안한다. 제안되는 방안은 매개변수간의 의미적인 유사도를 측정하여 이를 군집화 하여 새로운 객체가 될 수 있는 매개변수들을 식별한다. 제안되는 방안은 경력 있는 객체지향 소프트웨어 개발자들이 군집화한 매개변수리스트와의 비교를 통해 평가되고, 그 결과가 통계적으로 검증된다.

  • PDF

다중상황의 군집분석과 연관규칙을 이용한 지식추론 모델 (Knowledge Reasoning Model using Association Rules and Clustering Analysis of Multi-Context)

  • 신동훈;김민정;오상엽;정경용
    • 한국융합학회논문지
    • /
    • 제10권9호
    • /
    • pp.11-16
    • /
    • 2019
  • 사람들은 바쁜 현대사회 속에서 시간적 제재를 받고 있다. 이에 따라 사람들은 건강에 나쁜 영향을 미치는 간편한 인스턴트 식품을 섭취하고 간단한 운동조차하기 어려운 상황에 놓여있다. 또한 불필요한 정보과부화 현상으로 인해 개인의 특성에 적합하고 정확한 추론을 하는 것에 대한 중요성이 커지고 있다. 따라서 본 논문에서는 다중상황의 군집분석과 연관규칙을 이용한 지식추론 모델을 제안한다. 제안하는 방법은 상황정보에 따른 군집을 기반으로 연관규칙을 생성함으로써 사용자들에게 개인화된 헬스케어 방법을 제공한다. 이를 통해 각 질병에 대한 위험도를 추론함으로써 해당 질병에 대한 발병률을 낮출 수 있다. 또한 성능 평가를 통해 제안하는 모델이 비교 모델보다 수치상으로 F-measure 값이 0.027 더 높게 나타나며, 비교 모델 보다 우수하게 평가된다.

온라인 소셜 네트워크 생성 모델 (On-Line Social Network Generation Model)

  • 이강원
    • 한국정보통신학회논문지
    • /
    • 제24권7호
    • /
    • pp.914-924
    • /
    • 2020
  • 본 연구에서는 소셜 네트워크를 생성 할 수 있는 인공적인 네트워크 발생 모델을 제안 하였다. 본 연구에서 제안한 발생 모델은 온라인 소셜 네트워크의 특징인 Small-World 성질과 Scale-Free 성질을 단순하게 표현하는 것에서 벗어나 모델의 두 파라메터를 적절히 조절함으로서 사용자가 원하는 다양한 위상 특성치 값들을 나타내 줄 수 있도록 하였다. 이를 위해 Preferential Attachment의 세기를 조정 할 수 있도록 파라메터 K와 군집화 계수를 적절하게 조정 할 수 있도록 파라메터 P를 도입하였다. K가 0에서 10 그리고 P가 0.3에서 0.5 사이의 조합이나 K = 0과 P = 0.9를 이용하면 소셜 네트워크의 위상적 성질을 보유하는 인공적인 네트워크를 생성할 수 있다. 이 조합 하에서는 Small-World 성질과 Scale-Free 성질이 잘 나타난다. 노드차수 분포는 Power-Law를 따른다. 또한 군집화 계수 0.130 ~ 0.238, 평균 최단거리 5.641 ~ 5.985로 나타났다. 또한 네트워크의 크기를 노드 5,000개에서 10,000개로 증가시켜도 소셜 네트워크 성질을 그대로 유지하는 것으로 나타났다.

전력소비행위 변화를 위한 전력소비패턴 분석 및 적용 (Analysis and Application of Power Consumption Patterns for Changing the Power Consumption Behaviors)

  • 장민석;남광우;이연식
    • 한국정보통신학회논문지
    • /
    • 제25권4호
    • /
    • pp.603-610
    • /
    • 2021
  • 본 논문에서는 사용자의 전력소비패턴을 추출하고 사용자의 환경 및 감성을 적용한 최적 소비패턴을 모델링한 후, 이 두 가지의 패턴을 비교 적용하여 사용자의 전력소비행위 변화를 통한 전력의 효율적 사용 방법을 제시한다. 유의미한 소비패턴을 추출하기 위하여 벡터 표준화 및 이진 데이터 변환방법을 사용하고, k-평균 군집화를 적용한 앙상블의 합집합에 대한 학습과 k값에 따른 지지도를 적용하였으며, 최적 전력소비패턴 모델은 상대적 평균 소비량이 적은 앙상블 합집합에 대한 학습 결과를 기준으로 강제 및 감성 제어를 적용하여 생성하였다. 실험을 통하여 전력소비행위 변화 유도대상 추출 시 클러스터의 수와 일치율 간의 상관관계를 파악함으로써, 사용자의 의도에 따라 강제 및 감성 기반의 제어가 가능하도록 클러스터의 수나 크기 조절을 통한 다양한 윈도우에 적용할 수 있음을 검증하였다.