• Title/Summary/Keyword: 지능시스템

Search Result 12,467, Processing Time 0.034 seconds

Exploring the 4th Industrial Revolution Technology from the Landscape Industry Perspective (조경산업 관점에서 4차 산업혁명 기술의 탐색)

  • Choi, Ja-Ho;Suh, Joo-Hwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.47 no.2
    • /
    • pp.59-75
    • /
    • 2019
  • This study was carried out to explore the 4th Industrial Revolution technology from the perspective of the landscape industry to provide the basic data necessary to increase the virtuous circle value. The 4th Industrial Revolution, the characteristics of the landscape industry and urban regeneration were considered and the methodology was established and studied including the technical classification system suitable for systematic research, which was selected as a framework. First, the 4th Industrial Revolution technology based on digital data was selected, which could be utilized to increase the value of the virtuous circle for the landscape industry. From 'Element Technology Level', and 'Core Technology' such as the Internet of Things, Cloud Computing, Big Data, Artificial Intelligence, Robot, 'Peripheral Technology', Virtual or Augmented Reality, Drones, 3D 4D Printing, and 3D Scanning were highlighted as the 4th Industrial Revolution technology. It has been shown that it is possible to increase the value of the virtuous circle when applied at the 'Trend Level', in particular to the landscape industry. The 'System Level' was analyzed as a general-purpose technology, and based on the platform, the level of element technology(computers, and smart devices) was systematically interconnected, and illuminated with the 4th Industrial Revolution technology based on digital data. The application of the 'Trend Level' specific to the landscape industry has been shown to be an effective technology for increasing the virtuous circle values. It is possible to realize all synergistic effects and implementation of the proposed method at the trend level applying the element technology level. Smart gardens, smart parks, etc. have been analyzed to the level they should pursue. It was judged that Smart City, Smart Home, Smart Farm, and Precision Agriculture, Smart Tourism, and Smart Health Care could be highly linked through the collaboration among technologies in adjacent areas at the Trend Level. Additionally, various utilization measures of related technology applied at the Trend Level were highlighted in the process of urban regeneration, public service space creation, maintenance, and public service. In other words, with the realization of ubiquitous computing, Hyper-Connectivity, Hyper-Reality, Hyper-Intelligence, and Hyper-Convergence were proposed, reflecting the basic characteristics of digital technology in the landscape industry can be achieved. It was analyzed that the landscaping industry was effectively accommodating and coordinating with the needs of new characters, education and consulting, as well as existing tasks, even when participating in urban regeneration projects. In particular, it has been shown that the overall landscapig area is effective in increasing the virtuous circle value when it systems the related technology at the trend level by linking maintenance with strategic bridgehead. This is because the industrial structure is effective in distributing data and information produced from various channels. Subsequent research, such as demonstrating the fusion of the 4th Industrial Revolution technology based on the use of digital data in creation, maintenance, and service of actual landscape space is necessary.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

Multi-classification of Osteoporosis Grading Stages Using Abdominal Computed Tomography with Clinical Variables : Application of Deep Learning with a Convolutional Neural Network (멀티 모달리티 데이터 활용을 통한 골다공증 단계 다중 분류 시스템 개발: 합성곱 신경망 기반의 딥러닝 적용)

  • Tae Jun Ha;Hee Sang Kim;Seong Uk Kang;DooHee Lee;Woo Jin Kim;Ki Won Moon;Hyun-Soo Choi;Jeong Hyun Kim;Yoon Kim;So Hyeon Bak;Sang Won Park
    • Journal of the Korean Society of Radiology
    • /
    • v.18 no.3
    • /
    • pp.187-201
    • /
    • 2024
  • Osteoporosis is a major health issue globally, often remaining undetected until a fracture occurs. To facilitate early detection, deep learning (DL) models were developed to classify osteoporosis using abdominal computed tomography (CT) scans. This study was conducted using retrospectively collected data from 3,012 contrast-enhanced abdominal CT scans. The DL models developed in this study were constructed for using image data, demographic/clinical information, and multi-modality data, respectively. Patients were categorized into the normal, osteopenia, and osteoporosis groups based on their T-scores, obtained from dual-energy X-ray absorptiometry, into normal, osteopenia, and osteoporosis groups. The models showed high accuracy and effectiveness, with the combined data model performing the best, achieving an area under the receiver operating characteristic curve of 0.94 and an accuracy of 0.80. The image-based model also performed well, while the demographic data model had lower accuracy and effectiveness. In addition, the DL model was interpreted by gradient-weighted class activation mapping (Grad-CAM) to highlight clinically relevant features in the images, revealing the femoral neck as a common site for fractures. The study shows that DL can accurately identify osteoporosis stages from clinical data, indicating the potential of abdominal CT scans in early osteoporosis detection and reducing fracture risks with prompt treatment.

The Churchlands' Theory of Representation and the Semantics (처칠랜드의 표상이론과 의미론적 유사성)

  • Park, Je-Youn
    • Korean Journal of Cognitive Science
    • /
    • v.23 no.2
    • /
    • pp.133-164
    • /
    • 2012
  • Paul Churchland(1989) suggests the theory of representation from the results of cognitive biology and connectionist AI studies. According to the theory, our representations of the diverse phenomena in the world can be represented as the positions of phase state spaces with the actions of the neurons or of the assembly of neurons. He insists connectionist AI neural networks can have the semantical category systems to recognize the world. But Fodor and Lepore(1996) don't look the perspective bright. From their points of view, the Churchland's theory of representation stands on the base of Quine's holism, and the network semantics cannot explain how the criteria of semantical content similarity could be possible, and so cannot the theory. This thesis aims to excavate which one is the better between the perspective of the theory and the one of Fodor and Lepore's. From my understandings of state space theory of representation, artificial nets can coordinates the criteria of contents similarity by the learning algorithm. On the basis of these, I can see that Fodor and Lepore's points cannot penetrate the Churchlands' theory. From the view point of the theory, we can see how the future's artificial systems can have the conceptual systems recognizing the world. Therefore we can have the perspectives what cognitive scientists have to focus on.

  • PDF

Research Trends on Estimation of Soil Moisture and Hydrological Components Using Synthetic Aperture Radar (SAR를 이용한 토양수분 및 수문인자 산출 연구동향)

  • CHUNG, Jee-Hun;LEE, Yong-Gwan;KIM, Seong-Joon
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.3
    • /
    • pp.26-67
    • /
    • 2020
  • Synthetic Aperture Radar(SAR) is able to photograph the earth's surface regardless of weather conditions, day and night. Because of its possibility to search for hydrological factors such as soil moisture and groundwater, and its importance is gradually increasing in the field of water resources. SAR began to be mounted on satellites in the 1970s, and about 15 or more satellites were launched as of 2020, which around 10 satellites will be launched within the next 5 years. Recently, various types of SAR technologies such as enhancement of observation width and resolution, multiple polarization and multiple frequencies, and diversification of observation angles were being developed and utilized. In this paper, a brief history of the SAR system, as well as studies for estimating soil moisture and hydrological components were investigated. Up to now hydrological components that can be estimated using SAR satellites include soil moisture, subsurface groundwater discharge, precipitation, snow cover area, leaf area index(LAI), and normalized difference vegetation index(NDVI) and among them, soil moisture is being studied in 17 countries in South Korea, North America, Europe, and India by using the physical model, the IEM(Integral Equation Model) and the artificial intelligence-based ANN(Artificial Neural Network). RADARSAT-1, ENVISAT, ASAR, and ERS-1/2 were the most widely used satellite, but the operation has ended, and utilization of RADARSAT-2, Sentinel-1, and SMAP, which are currently in operation, is gradually increasing. Since Korea is developing a medium-sized satellite for water resources and water disasters equipped with C-band SAR with the goal of launching in 2025, various hydrological components estimation researches using SAR are expected to be active.

A 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS Algorithmic A/D Converter (14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS 알고리즈믹 A/D 변환기)

  • Park, Yong-Hyun;Lee, Kyung-Hoon;Choi, Hee-Cheol;Lee, Seung-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.43 no.12 s.354
    • /
    • pp.65-73
    • /
    • 2006
  • This work presents a 14b 200KS/s $0.87mm^2$ 1.2mW 0.18um CMOS algorithmic A/D converter (ADC) for intelligent sensors control systems, battery-powered system applications simultaneously requiring high resolution, low power, and small area. The proposed algorithmic ADC not using a conventional sample-and-hold amplifier employs efficient switched-bias power-reduction techniques in analog circuits, a clock selective sampling-capacitor switching in the multiplying D/A converter, and ultra low-power on-chip current and voltage references to optimize sampling rate, resolution, power consumption, and chip area. The prototype ADC implemented in a 0.18um 1P6M CMOS process shows a measured DNL and INL of maximum 0.98LSB and 15.72LSB, respectively. The ADC demonstrates a maximum SNDR and SFDR of 54dB and 69dB, respectively, and a power consumption of 1.2mW at 200KS/s and 1.8V. The occupied active die area is $0.87mm^2$.

QoS improving method of Smart Grid Application using WMN based IEEE 802.11s (IEEE 802.11s기반 WMN을 사용한 Smart Grid Application의 QoS 성능향상 방안 연구)

  • Im, Eun Hye;Jung, Whoi Jin;Kim, Young Hyun;Kim, Byung Chul;Lee, Jae Yong
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.11-23
    • /
    • 2014
  • Wireless Mesh Network(WMN) has drawn much attention due to easy deployment and good scalability. Recently, major power utilities have been focusing on R&D to apply WMN technology in Smart Grid Network. Smart Grid is an intelligent electrical power network that can maximize energy efficiency through bidirectional communication between utility providers and customers with ICT(Information Communication Technology). It is necessary to guarantee QoS of some important data in Smart Grid system such as real-time data delivery. In this paper, we suggest QoS enhancement method for WMN based Smart Grid system using IEEE 802.11s. We analyze Smart Grid Application characteristics and apply IEEE 802.11s WMN scheme for Smart Grid in domestic power communication system. Performance evaluation is progressed using NS-2 simulator implementing IEEE 802.11s. The simulation results show that the QoS enhancement scheme can guarantee stable bandwidth irrespective of traffic condition due to IEEE 802.11s reservation mechanism.

A Study on the Improvement Scheme of University's Software Education

  • Lee, Won Joo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.3
    • /
    • pp.243-250
    • /
    • 2020
  • In this paper, we propose an effective software education scheme for universities. The key idea of this software education scheme is to analyze software curriculum of QS world university rankings Top 10, SW-oriented university, and regional main national university. And based on the results, we propose five improvements for the effective SW education method of universities. The first is to enhance the adaptability of the industry by developing courses based on the SW developer's job analysis in the curriculum development process. Second, it is necessary to strengthen the curriculum of the 4th industrial revolution core technologies(cloud computing, big data, virtual/augmented reality, Internet of things, etc.) and integrate them with various fields such as medical, bio, sensor, human, and cognitive science. Third, programming language education should be included in software convergence course after basic syntax education to implement projects in various fields. In addition, the curriculum for developing system programming developers and back-end developers should be strengthened rather than application program developers. Fourth, it offers opportunities to participate in industrial projects by reinforcing courses such as capstone design and comprehensive design, which enables product-based self-directed learning. Fifth, it is necessary to develop university-specific curriculum based on local industry by reinforcing internship or industry-academic program that can acquire skills in local industry field.

Development of a Mid-/Long-term Prediction Algorithm for Traffic Speed Under Foggy Weather Conditions (안개시 도시고속도로 통행속도 중장기 예측 알고리즘 개발)

  • JEONG, Eunbi;OH, Cheol;KIM, Youngho
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.3
    • /
    • pp.256-267
    • /
    • 2015
  • The intelligent transportation systems allow us to have valuable opportunities for collecting wide-area coverage traffic data. The significant efforts have been made in many countries to provide the reliable traffic conditions information such as travel time. This study analyzes the impacts of the fog weather conditions on the traffic stream. Also, a strategy for predicting the long-term traffic speeds is developed under foggy weather conditions. The results show that the average of speed reductions are 2.92kph and 5.36kph under the slight and heavy fog respectively. The best prediction performance is achieved when the previous 45 pattern cases data is used, and the 14.11% of mean absolute percentage error(MAPE) is obtained. The outcomes of this study support the development of more reliable traffic information for providing advanced traffic information service.

An Incident-Responsive Dynamic Control Model for Urban Freeway Corridor (도시고속도로축의 유고감응 동적제어모형의 구축)

  • 유병석;박창호;전경수;김동선
    • Journal of Korean Society of Transportation
    • /
    • v.17 no.4
    • /
    • pp.59-69
    • /
    • 1999
  • A Freeway corridor is a network consisting of a few Primary longitudinal roadways (freeway or major arterial) carrying a major traffic movement with interconnecting roads which offer the motorist alternative paths to his/her destination. Control measures introduced to ameliorate traffic performance in freeway corridors typically include ramp metering at the freeway entrances, and signal control at each intersections. During a severe freeway incident, on-ramp metering usually is not adequate to relieve congestion effectively. Diverting some traffic to the Parallel surface street to make full use of available corridor capacity will be necessary. This is the purpose of the traffic management system. So, an integrated traffic control scheme should include three elements. (a)on-ramp metering, (b)off-ramp diversion and (c)signal timing at surface street intersections. The purpose of this study is to develop an integrated optimal control model in a freeway corridor. By approximating the flow-density relation with a two-segment linear function. the nonlinear optimal control problem can be simplified into a set of Piecewise linear programming models. The formulated optimal-control Problem can be solved in real time using common linear program. In this study, program MPL(ver 4.0) is used to solve the formulated optimal-control problem. Simulation results with TSIS(ver 4.01) for a sample network have demonstrated the merits of the Proposed model and a1gorithm.

  • PDF