• Title/Summary/Keyword: 지능성평가

Search Result 1,111, Processing Time 0.026 seconds

Current and Future Perspectives of Lung Organoid and Lung-on-chip in Biomedical and Pharmaceutical Applications

  • Junhyoung Lee;Jimin Park;Sanghun Kim;Esther Han;Sungho Maeng;Jiyou Han
    • Journal of Life Science
    • /
    • v.34 no.5
    • /
    • pp.339-355
    • /
    • 2024
  • The pulmonary system is a highly complex system that can only be understood by integrating its functional and structural aspects. Hence, in vivo animal models are generally used for pathological studies of pulmonary diseases and the evaluation of inhalation toxicity. However, to reduce the number of animals used in experimentation and with the consideration of animal welfare, alternative methods have been extensively developed. Notably, the Organization for Economic Co-operation and Development (OECD) and the United States Environmental Protection Agency (USEPA) have agreed to prohibit animal testing after 2030. Therefore, the latest advances in biotechnology are revolutionizing the approach to developing in vitro inhalation models. For example, lung organ-on-a-chip (OoC) and organoid models have been intensively studied alongside advancements in three-dimensional (3D) bioprinting and microfluidic systems. These modeling systems can more precisely imitate the complex biological environment compared to traditional in vivo animal experiments. This review paper addresses multiple aspects of the recent in vitro modeling systems of lung OoC and organoids. It includes discussions on the use of endothelial cells, epithelial cells, and fibroblasts composed of lung alveoli generated from pluripotent stem cells or cancer cells. Moreover, it covers lung air-liquid interface (ALI) systems, transwell membrane materials, and in silico models using artificial intelligence (AI) for the establishment and evaluation of in vitro pulmonary systems.

The Audience Behavior-based Emotion Prediction Model for Personalized Service (고객 맞춤형 서비스를 위한 관객 행동 기반 감정예측모형)

  • Ryoo, Eun Chung;Ahn, Hyunchul;Kim, Jae Kyeong
    • Journal of Intelligence and Information Systems
    • /
    • v.19 no.2
    • /
    • pp.73-85
    • /
    • 2013
  • Nowadays, in today's information society, the importance of the knowledge service using the information to creative value is getting higher day by day. In addition, depending on the development of IT technology, it is ease to collect and use information. Also, many companies actively use customer information to marketing in a variety of industries. Into the 21st century, companies have been actively using the culture arts to manage corporate image and marketing closely linked to their commercial interests. But, it is difficult that companies attract or maintain consumer's interest through their technology. For that reason, it is trend to perform cultural activities for tool of differentiation over many firms. Many firms used the customer's experience to new marketing strategy in order to effectively respond to competitive market. Accordingly, it is emerging rapidly that the necessity of personalized service to provide a new experience for people based on the personal profile information that contains the characteristics of the individual. Like this, personalized service using customer's individual profile information such as language, symbols, behavior, and emotions is very important today. Through this, we will be able to judge interaction between people and content and to maximize customer's experience and satisfaction. There are various relative works provide customer-centered service. Specially, emotion recognition research is emerging recently. Existing researches experienced emotion recognition using mostly bio-signal. Most of researches are voice and face studies that have great emotional changes. However, there are several difficulties to predict people's emotion caused by limitation of equipment and service environments. So, in this paper, we develop emotion prediction model based on vision-based interface to overcome existing limitations. Emotion recognition research based on people's gesture and posture has been processed by several researchers. This paper developed a model that recognizes people's emotional states through body gesture and posture using difference image method. And we found optimization validation model for four kinds of emotions' prediction. A proposed model purposed to automatically determine and predict 4 human emotions (Sadness, Surprise, Joy, and Disgust). To build up the model, event booth was installed in the KOCCA's lobby and we provided some proper stimulative movie to collect their body gesture and posture as the change of emotions. And then, we extracted body movements using difference image method. And we revised people data to build proposed model through neural network. The proposed model for emotion prediction used 3 type time-frame sets (20 frames, 30 frames, and 40 frames). And then, we adopted the model which has best performance compared with other models.' Before build three kinds of models, the entire 97 data set were divided into three data sets of learning, test, and validation set. The proposed model for emotion prediction was constructed using artificial neural network. In this paper, we used the back-propagation algorithm as a learning method, and set learning rate to 10%, momentum rate to 10%. The sigmoid function was used as the transform function. And we designed a three-layer perceptron neural network with one hidden layer and four output nodes. Based on the test data set, the learning for this research model was stopped when it reaches 50000 after reaching the minimum error in order to explore the point of learning. We finally processed each model's accuracy and found best model to predict each emotions. The result showed prediction accuracy 100% from sadness, and 96% from joy prediction in 20 frames set model. And 88% from surprise, and 98% from disgust in 30 frames set model. The findings of our research are expected to be useful to provide effective algorithm for personalized service in various industries such as advertisement, exhibition, performance, etc.

Analysis of promising countries for export using parametric and non-parametric methods based on ERGM: Focusing on the case of information communication and home appliance industries (ERGM 기반의 모수적 및 비모수적 방법을 활용한 수출 유망국가 분석: 정보통신 및 가전 산업 사례를 중심으로)

  • Jun, Seung-pyo;Seo, Jinny;Yoo, Jae-Young
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.175-196
    • /
    • 2022
  • Information and communication and home appliance industries, which were one of South Korea's main industries, are gradually losing their export share as their export competitiveness is weakening. This study objectively analyzed export competitiveness and suggested export-promising countries in order to help South Korea's information communication and home appliance industries improve exports. In this study, network properties, centrality, and structural hole analysis were performed during network analysis to evaluate export competitiveness. In order to select promising export countries, we proposed a new variable that can take into account the characteristics of an already established International Trade Network (ITN), that is, the Global Value Chain (GVC), in addition to the existing economic factors. The conditional log-odds for individual links derived from the Exponential Random Graph Model (ERGM) in the analysis of the cross-border trade network were assumed as a proxy variable that can indicate the export potential. In consideration of the possibility of ERGM linkage, a parametric approach and a non-parametric approach were used to recommend export-promising countries, respectively. In the parametric method, a regression analysis model was developed to predict the export value of the information and communication and home appliance industries in South Korea by additionally considering the link-specific characteristics of the network derived from the ERGM to the existing economic factors. Also, in the non-parametric approach, an abnormality detection algorithm based on the clustering method was used, and a promising export country was proposed as a method of finding outliers that deviate from two peers. According to the research results, the structural characteristic of the export network of the industry was a network with high transferability. Also, according to the centrality analysis result, South Korea's influence on exports was weak compared to its size, and the structural hole analysis result showed that export efficiency was weak. According to the model for recommending promising exporting countries proposed by this study, in parametric analysis, Iran, Ireland, North Macedonia, Angola, and Pakistan were promising exporting countries, and in nonparametric analysis, Qatar, Luxembourg, Ireland, North Macedonia and Pakistan were analyzed as promising exporting countries. There were differences in some countries in the two models. The results of this study revealed that the export competitiveness of South Korea's information and communication and home appliance industries in GVC was not high compared to the size of exports, and thus showed that exports could be further reduced. In addition, this study is meaningful in that it proposed a method to find promising export countries by considering GVC networks with other countries as a way to increase export competitiveness. This study showed that, from a policy point of view, the international trade network of the information communication and home appliance industries has an important mutual relationship, and although transferability is high, it may not be easily expanded to a three-party relationship. In addition, it was confirmed that South Korea's export competitiveness or status was lower than the export size ranking. This paper suggested that in order to improve the low out-degree centrality, it is necessary to increase exports to Italy or Poland, which had significantly higher in-degrees. In addition, we argued that in order to improve the centrality of out-closeness, it is necessary to increase exports to countries with particularly high in-closeness. In particular, it was analyzed that Morocco, UAE, Argentina, Russia, and Canada should pay attention as export countries. This study also provided practical implications for companies expecting to expand exports. The results of this study argue that companies expecting export expansion need to pay attention to countries with a relatively high potential for export expansion compared to the existing export volume by country. In particular, for companies that export daily necessities, countries that should pay attention to the population are presented, and for companies that export high-end or durable products, countries with high GDP, or purchasing power, relatively low exports are presented. Since the process and results of this study can be easily extended and applied to other industries, it is also expected to develop services that utilize the results of this study in the public sector.

Detection of Illegal U-turn Vehicles by Optical Flow Analysis (옵티컬 플로우 분석을 통한 불법 유턴 차량 검지)

  • Song, Chang-Ho;Lee, Jaesung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.10
    • /
    • pp.948-956
    • /
    • 2014
  • Today, Intelligent Vehicle Detection System seeks to reduce the negative factors, such as accidents over to get the traffic information of existing system. This paper proposes detection algorithm for the illegal U-turn vehicles which can cause critical accident among violations of road traffic laws. We predicted that if calculated optical flow vectors were shown on the illegal U-turn path, they would be cause of the illegal U-turn vehicles. To reduce the high computational complexity, we use the algorithm of pyramid Lucas-Kanade. This algorithm only track the key-points likely corners. Because of the high computational complexity, we detect center lane first through the color information and progressive probabilistic hough transform and apply to the around of center lane. And then we select vectors on illegal U-turn path and calculate reliability to check whether vectors is cause of the illegal U-turn vehicles or not. Finally, In order to evaluate the algorithm, we calculate process time of the type of algorithm and prove that proposed algorithm is efficiently.

Measuring the Performance of World Friends IT Volunteers (월드프렌즈 IT봉사단의 성과평가 연구: 개별 봉사단원의 특성과 역량, 인성, 인적 네트워크부문 성과지표를 중심으로)

  • Lee, Soo-Yeon;Lee, Hee-Jin;Yoon, Jeong-Won;Kwon, Goo-Soon
    • Informatization Policy
    • /
    • v.24 no.2
    • /
    • pp.68-86
    • /
    • 2017
  • This research aims to analyze the changes in participants' capacity (problem-solving ability and self-leadership), humanity (self-efficacy), and global network (intercultural sensitivity) as performance indicators and the 'effectiveness of personal characteristics' of the World Friends IT Volunteers program. To do this, the study conducted a pre-test and a post-test on 364 participants of the World Friends IT Volunteers program. The collected data is investigated through ANCOVA using covariates, driven from the prerest results. The results of this study represent that meaningful improvements have been identified in problem-solving ability, self-leadership and intercultural sensitivity since the operation of the program. Regarding the personal characteristics, performance in the female group improved more than the male group in terms of intercultural sensitivity, whereas the male group showed better performance on self-efficacy than the female group. In addition, the group with a high level of English proficiency showed more progress on intercultural sensitivity and self-leadership than the English-beginner group. Besides, the group who had an experience of short-term stay overseas showed moderate improvement on problem-solving ability and intercultural sensitivity when compared to other groups. The group who had lived overseas for a long-term showed better indicators on intercultural sensitivity. Also, self-efficacy of the leader group was more noticeable than that of the member group.

Development and Application of Imputation Technique Based on NPR for Missing Traffic Data (NPR기반 누락 교통자료 추정기법 개발 및 적용)

  • Jang, Hyeon-Ho;Han, Dong-Hui;Lee, Tae-Gyeong;Lee, Yeong-In;Won, Je-Mu
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.61-74
    • /
    • 2010
  • ITS (Intelligent transportation systems) collects real-time traffic data, and accumulates vest historical data. But tremendous historical data has not been managed and employed efficiently. With the introduction of data management systems like ADMS (Archived Data Management System), the potentiality of huge historical data dramatically surfs up. However, traffic data in any data management system includes missing values in nature, and one of major obstacles in applying these data has been the missing data because it makes an entire dataset useless every so often. For these reasons, imputation techniques take a key role in data management systems. To address these limitations, this paper presents a promising imputation technique which could be mounted in data management systems and robustly generates the estimations for missing values included in historical data. The developed model, based on NPR (Non-Parametric Regression) approach, employs various traffic data patterns in historical data and is designated for practical requirements such as the minimization of parameters, computational speed, the imputation of various types of missing data, and multiple imputation. The model was tested under the conditions of various missing data types. The results showed that the model outperforms reported existing approaches in the side of prediction accuracy, and meets the computational speed required to be mounted in traffic data management systems.

Implementation of Medical Information System for Korean by Tissue Mineral Analysis (모발분석 및 처리를 위한 한국형 의료 정보 시스템 구축)

  • 조영임
    • Journal of Korea Multimedia Society
    • /
    • v.6 no.1
    • /
    • pp.148-160
    • /
    • 2003
  • TMA(Tissue Mineral Analysis) is very popular method in hair mineral analysis for health care professionals in over 48 countries medical center. Assesment of nutritional minerals and toxic elements in the hair is very important not only for determining adequacy, deficiencies and unbalance, but also for assessing their relative relationships in a body. In Korea, there are some problems in TMA method. Because of not haying a medical information database which is suitable for korean to do analyze, the requested TMA has to send to TEI-USA. However, as the TMA results from TEI-USA is composed of English documents and graphic files prohibited to open, its usability is very low and a lot of dollars has to be payed. Also, it can make some problems in the reliability of the TMA results, since the TMA results are based on the database of western health and mineral standards, To solve these problems, I developed the first Medical Information System of TMA in Korea here. The system can analyze the complex tissue mineral data with multiple stage decision tree classifier. It is also constructed with multiple fuzzy database and hence analyze the TMA data by fuzzy inference methods. The effectiveness test of this systems can be shown the increased business efficiency and satisfaction rate 86% and 92% respectively.

  • PDF

Intelligent Web Crawler for Supporting Big Data Analysis Services (빅데이터 분석 서비스 지원을 위한 지능형 웹 크롤러)

  • Seo, Dongmin;Jung, Hanmin
    • The Journal of the Korea Contents Association
    • /
    • v.13 no.12
    • /
    • pp.575-584
    • /
    • 2013
  • Data types used for big-data analysis are very widely, such as news, blog, SNS, papers, patents, sensed data, and etc. Particularly, the utilization of web documents offering reliable data in real time is increasing gradually. And web crawlers that collect web documents automatically have grown in importance because big-data is being used in many different fields and web data are growing exponentially every year. However, existing web crawlers can't collect whole web documents in a web site because existing web crawlers collect web documents with only URLs included in web documents collected in some web sites. Also, existing web crawlers can collect web documents collected by other web crawlers already because information about web documents collected in each web crawler isn't efficiently managed between web crawlers. Therefore, this paper proposed a distributed web crawler. To resolve the problems of existing web crawler, the proposed web crawler collects web documents by RSS of each web site and Google search API. And the web crawler provides fast crawling performance by a client-server model based on RMI and NIO that minimize network traffic. Furthermore, the web crawler extracts core content from a web document by a keyword similarity comparison on tags included in a web documents. Finally, to verify the superiority of our web crawler, we compare our web crawler with existing web crawlers in various experiments.

Analysis of Working Memory for Attention Deficit Hyperactivity Disorder (ADHD) Children using fMRI (주의력결핍 과잉행동성장애(ADHD) 아동의 작업기억 과제 수행 시 fMRI 분석)

  • Lee, Yong-Ki;Ahn, Sung-Min
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.12
    • /
    • pp.854-862
    • /
    • 2014
  • Attention deficit hyperactivity disorder (ADHD) students' intellctual defects, learning problems, and poor academic achievements seem to be due to significantly lower intelligence compared to the normal students, but rather the characteristic of inability to pay attention at a given time can be seen as the more attributing reason. In this study, a comparison between the ADHD students and the normal students will be performed using a fMRI analysis in order to differentiate the brain function between the two groups during a working memory task performance and to assess the difference in the activated regions of the brain. Clinical survey examinations and fMRI measurements were performed for a group of 26 elementary students from the Incheon area. The stimulus of fMRI was a working memory. Cartography statistically analyzed parameters and the Statistical Package of Social Sciences using single-sample t-test, two-sample t-test, were analyzed by multiple regression analysis, the statistical significance level was p<0.05 in, respectively. The disproportionate developments could be seen in the ADHD students group such as the frontal cortex, parietal cortex, thalamus, and caudate nucleus, among others. In addition, as some students felt the increase in the difficulty of working memory task performance, the orbitofrontal cortex and the hippocampus were activated, which seems to be the result of an effort for looking for an answer. More types of ADHD students needs to be secured as research subjects, and more stimulations for fMRI experiments should be considered as it would be useful in the overall evaluation of brain function.

Development of Joint-Based Motion Prediction Model for Home Co-Robot Using SVM (SVM을 이용한 가정용 협력 로봇의 조인트 위치 기반 실행동작 예측 모델 개발)

  • Yoo, Sungyeob;Yoo, Dong-Yeon;Park, Ye-Seul;Lee, Jung-Won
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.491-498
    • /
    • 2019
  • Digital twin is a technology that virtualizes physical objects of the real world on a computer. It is used by collecting sensor data through IoT, and using the collected data to connect physical objects and virtual objects in both directions. It has an advantage of minimizing risk by tuning an operation of virtual model through simulation and responding to varying environment by exploiting experiments in advance. Recently, artificial intelligence and machine learning technologies have been attracting attention, so that tendency to virtualize a behavior of physical objects, observe virtual models, and apply various scenarios is increasing. In particular, recognition of each robot's motion is needed to build digital twin for co-robot which is a heart of industry 4.0 factory automation. Compared with modeling based research for recognizing motion of co-robot, there are few attempts to predict motion based on sensor data. Therefore, in this paper, an experimental environment for collecting current and inertia data in co-robot to detect the motion of the robot is built, and a motion prediction model based on the collected sensor data is proposed. The proposed method classifies the co-robot's motion commands into 9 types based on joint position and uses current and inertial sensor values to predict them by accumulated learning. The data used for accumulating learning is the sensor values that are collected when the co-robot operates with margin in input parameters of the motion commands. Through this, the model is constructed to predict not only the nine movements along the same path but also the movements along the similar path. As a result of learning using SVM, the accuracy, precision, and recall factors of the model were evaluated as 97% on average.