• Title/Summary/Keyword: 지능보행

Search Result 193, Processing Time 0.03 seconds

Tracking and Recognition of vehicle and pedestrian for intelligent multi-visual surveillance systems (지능형 다중 화상감시시스템을 위한 움직이는 물체 추적 및 보행자/차량 인식 방법)

  • Lee, Saac;Cho, Jae-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.435-442
    • /
    • 2015
  • In this paper, we propose a tracking and recognition of pedestrian/vehicle for intelligent multi-visual surveillance system. The intelligent multi-visual surveillance system consists of several fixed cameras and one calibrated PTZ camera, which automatically tracks and recognizes the detected moving objects. The fixed wide-angle cameras are used to monitor large open areas, but the moving objects on the images are too small to view in detail. But, the PTZ camera is capable of increasing the monitoring area and enhancing the image quality by tracking and zooming in on a target. The proposed system is able to determine whether the detected moving objects are pedestrian/vehicle or not using the SVM. In order to reduce the tracking error, an improved camera calibration algorithm between the fixed cameras and the PTZ camera is proposed. Various experimental results show the effectiveness of the proposed system.

A Pedestrian Collision Warning System using a Fuzzy Logic (퍼지로직을 이용한 보행자 충돌 경고 시스템)

  • Kim, Yang Ho;Kim, Kwangsoo;Kwak, Sooyeong
    • Journal of Broadcast Engineering
    • /
    • v.20 no.3
    • /
    • pp.440-448
    • /
    • 2015
  • A pedestrian collision warning system which makes a judgement of pedestrian's intention to help avoiding hitting accidents is proposed. This system uses the image sequences obtained from a car black box as well as vehicle's speed obtained from a GPS. It detects pedestrians, if any, based on the Histogram of Gradient method and extracts several information such as the pedestrian's relative positions, the direction of motion vectors, and distance between vehicle and pedestrian . A fuzzy logic based on these extracted information is applied to analyze the pedestrian's safety levels. When the safety level is determined to be danger, an alarm is triggered to the driver. The performance of the proposed algorithm is tested under various driving scenarios, which shows it works successfully in real-time.

Algebraic Force Distribution in Hexapod Walking Robots with a Failed Leg (고장이 존재하는 육족 보행 로봇을 위한 대수적 힘 분배)

  • Yang, Jung-Min
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.457-463
    • /
    • 2009
  • In this paper, a novel foot force distribution algorithm for hexapod walking robots is presented. The considered hexapod robot has fault-tolerant tripod gaits with a failed leg in locked-joint failure. The principle of the proposed algorithm is to minimize the slippage of the leg that determines the stability margin of the fault-tolerant gaits. The fault-tolerant tripod gait has a drawback that it has less stability margin than normal gaits. Considering this drawback, we use the feature that there are always three supporting legs, and by incorporating the theory of Zero-Interaction Force, we calculate the foot forces analytically without resort to any optimization technique. In a case study, the proposed algorithm is compared with a conventional foot force distribution method and its applicability is demonstrated.

Development of Intelligent Walking Assistive Robot Using Stereo Cameras (스테레오 카메라를 이용한 지능형 보행보조로봇의 개발)

  • Park, Min-Jong;Kim, Jung-Yup
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.8
    • /
    • pp.837-848
    • /
    • 2014
  • This paper describes the development of a walking assistive robot for effective self-rehabilitation for elderly people facing an inconvenience in walking. The main features of the developed robot are enhanced safety and mobility using the baby walker and electric wheelchair mechanisms and an accurate walking tracking control algorithm using potentiometers and stereo cameras. Specifically, a pelvis supporter is designed to prevent the user from falling down and reduce the burden on their legs, and electric motors are used for easy locomotion with low effort. Next, the walking intention and direction of the user are automatically recognized by using potentiometers attached at the pelvis supporter so that the robot can track the user, and the rapidity and accuracy of the tracking were increased by applying a lower-body motion analysis algorithm with stereo cameras. Finally, the user-tracking performance of the developed robot was experimentally verified through stepwise walking assistance experiments.

Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process (다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계)

  • Han, Myung-ho;Ryu, Chang-ju;Lee, Sang-duck;Han, Seung-jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.4
    • /
    • pp.641-647
    • /
    • 2018
  • Recently, CCTV, which provides video information for multiple purposes, has been transformed into an intelligent, and the range of automation applications increased using the computer vision. A highly reliable detection method must be performed for accurate recognition of pedestrians and vehicles and various methods are being studied for this purpose. In such an object detection system. In this paper, we propose a method to detect a large number of pedestrians by acquiring three characteristic information that features of color information using HSI, motion vector information and shaping information using HOG feature information of a pedestrian in a situation where a large number of pedestrians are moving. The proposed method distinguishes each pedestrian while minimizing the failure or confusion of pedestrian detection and tracking. Also when pedestrians approach or overlap, pedestrians are identified and detected using stored frame feature data.

Design of Pedestrian Detection and Tracking System Using HOG-PCA and Object Tracking Algorithm (HOG-PCA와 객체 추적 알고리즘을 이용한 보행자 검출 및 추적 시스템 설계)

  • Park, Chan-Jun;Oh, Sung-Kwun;Kim, Jin-Yul
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1351-1352
    • /
    • 2015
  • 본 논문에서는 지능형 영상 감시 시스템에서 보행자를 검출하고 추적을 수행하기 위해 은닉층 활성함수에 가우시안 대신 FCM를 사용한 RBFNNs 패턴분류기와 객체 추적 알고리즘인 Mean Shift를 융합한 시뮬레이터를 개발한다. 시뮬레이터는 검출부과 추적부로 나누며, 검출부에서는 입력 영상으로부터 기울기의 방향성을 이용한 HOG(Histogram of Oriented Gradient) 특징을 구하고 빠른 처리속도를 위해 PCA 알고리즘을 통해 차원수를 축소하고 pRBFNNs 패턴분류기를 통해 보행자를 검출 한다. 다음 추적부에서 객체 추적 알고리즘인 Mean Shift를 이용하여 검출된 보행자 추적을 수행한다.

  • PDF

HOG and Color Information based 2-Stages Pedestrian Detection System (HOG와 컬러정보 기반의 2단계 보행자 탐지 시스템)

  • Jang, Gyu-Jin;Kim, Jin-Pyung;Kim, Moon-Hyun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1365-1368
    • /
    • 2015
  • 컴퓨터 비전 분야의 활용영역과 시장성이 증대하면서 가장 많이 사용되는 객체인식 및 탐지 기술과 관련된 연구는 꾸준히 진행되고 있다. 최근에는 ADAS(Advanced Driver Assistance Systems)와 특징적인 객체를 인식 추적할 수 있는 지능형 감시시스템에서의 가장 핵심적인 기술로 자리 잡고 있다. 본 연구에서는 보행자 탐지에 사용하는 특징들 중에서 조명변화에 강건한 HOG와 Cascade-Adaboost를 기반으로 보행자 탐지 모델을 후보영역을 검출하고 검출된 영역에서 컬러정보를 추출하여 의사결정 트리에 적용시켜 최종 보행자를 탐지하는 시스템을 제안한다.