• Title/Summary/Keyword: 증속기어

Search Result 14, Processing Time 0.019 seconds

A Detail Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-bearing System (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.2
    • /
    • pp.116-123
    • /
    • 2002
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element, this paper intends to look into in detail the coupled lateral and torsional vibration characteristics of a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled natural frequencies and their mode shapes upon varying the gear mesh stiffness with considerations on rotating speeds, and also by comparing the strain energies of lateral and torsional vibration modes. Results hale shown that some modes may hale the coupled lateral and torsional mode characteristics as the gear mesh stiffness Increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, j.e., a certain dominant mode may change from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

A Detailed Investigation on Coupled Lateral and Torsional Vibration Characteristics in a Speed Increasing Geared Rotor-Bearing system (증속 기어전동 로터-베어링 시스템에서 횡-비틀림 연성진동 특성의 상세 고찰)

  • 이안성;하진웅;최동훈
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.722-728
    • /
    • 2001
  • Applying a general coupled lateral and torsional vibration finite element model of gear pair element this paper intends to look into in detail the coupled lateral and torsional vibration characteristics in a turbo-chiller rotor bearing system, having a bull-pinion speed increasing gear. Investigations have been carried out systematically by comparing the uncoupled and coupled analyses natural vibration frequencies and their mode shapes upon varying the gear mesh stiffness, and also by comparing the strain energies of lateral and torsional vibration modes. Results have shown that some modes may have coupled lateral and torsional mode characteristics as the gear mesh stiffness increases over a certain value, and moreover that their associated dominant modes may be different from their initial modes, i.e., the dominant mode changes from an initial torsional one to a lateral one or from an initial lateral one to a torsional one.

  • PDF

Design of a Torque Application Device in Test Rig for a Wind Turbine Gearbox (풍력발전기용 증속기 시험 장비의 토크 인가 장치 설계)

  • Kim, Jeong-Gil;Park, Young-Jun;Lee, Geun-Ho;Nam, Yong-Yun;Oh, Joo-Young
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.507-515
    • /
    • 2015
  • This study was conducted to develop and verify a torque application device for use in a mechanical power-circulation test rig for 5.5 MW wind turbine gearboxes. The design and analysis of the torque application device was conducted. In addition, the torsional stiffness of the test rig was calculated using the rotational angle measurements for each of the components. The calculated stiffness of the test rig was $231.13kN{\cdot}m/rad$ for a clockwise torque application. The rated torque can be applied when the stiffness of the gearbox is greater than $1,064,400kN{\cdot}m/rad$ for a clockwise torque application. Because of the limited rotational angle of the test rig, the potential application of the rated torque is determined according to the torsional stiffness of the test gearbox.

Performance Analysis of Oil-lubricated Thrust Collars in Integrally Geared Compressors (증속 기어 압축기용 스러스트 칼라의 윤활 성능 해석)

  • Lee, Donghyun;Kim, Byungok;Sun, Kyungho
    • Tribology and Lubricants
    • /
    • v.34 no.5
    • /
    • pp.169-174
    • /
    • 2018
  • A multi-stage compressor (MSC) is comprised of several impellers installed in the pinion gear shaft driven by a main bull gear. In the pinion shaft, a thrust collar (TC) is installed to support the thrust load. The TC makes the lubrication system simpler in the MSC; therefore, it is widely used in similar kinds of machinery. Typically, TCs are installed on both sides of the bull gear and pressure is developed in the lubricated area by creating a taper angle on the TC and bull gear surface. In the current study, we developed a numerical analysis model to evaluate the performance of the TC considering its design parameters. We sloved the Reynolds equation using the finite element method and applied the half Sommerfeld condition to consider cavitation. Based on the pressure calculated in the lubricated area, we calculated the power loss and minimum film thickness. In addition, we calculated stiffness and damping using perturbation method. We performed parametric studies using the developed model. The results of the analysis show that the maximum pressure presents in the center area of the TC and it increases with the taper angle. The area over which pressure is developed decreases with the taper angle. The results also show that there is an optimum taper angle providing minimum power loss and maximum film thickness. Additionally, the stiffness and damping decrease with the taper angle. As the applied load increases, the power loss increases and the minimum film thickness decreases. However, the stiffness and damping increase with the applied load.