• 제목/요약/키워드: 증발압력

검색결과 271건 처리시간 0.03초

원심압축기에서 물분사 압축과정에 대한 이론적 해석

  • 강정식;차봉준;양수석
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.18-24
    • /
    • 2005
  • 가스터빈엔진에서 압축기가 사용하는 에너지는 터빈에서 생성하는 에너지의 30-50%까지도 이르기 때문에 압축기의 일을 줄이는 연구는 가스터빈의 효율을 증가시키는 문제와 연관된 중요한 연구주제이다. 압축기의 일을 줄이는 한 가지 방법으로 압축기의 입구에 물입자를 분사하는 방법이 제안되었는데, 이 방법은 물입자가 증발하면서 압축기 출구의 온도를 낮추어서 결과적으로 압축과정에 소요되는 에너지를 줄일 수 있는 방법이다. 이전까지의 연구는 열역학적 해석에 집중하여 온도 및 일의 감소를 해석하거나, 실험에 근거하여 가스터빈의 성능변화에 집중되었다. 본 논문에서는 물분사의 영향을 마이크로 터빈용 원심 압축기에 적용하여 열역학적 해석 뿐 아니라 공력학적 해석을 수행하였다. 물을 분사할 경우 공기압축과정보다 임펠러 출구 유동각이 줄어들었으며, 증발율이 높을수록 유동각 감소가 증가하였고, 압력비가 낮을수록 유동각 감소가 증가하였다.

  • PDF

이산화탄소의 수직원관 내 상향유동 증발열전달 특성에 관한 연구 (A study on the characteristics of evaporation heat transfer of carbon dioxide flowing upward in a vertical smooth tube)

  • 김용진;조진민;김민수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회B
    • /
    • pp.2217-2221
    • /
    • 2007
  • Because of the ozone layer depletion and global warming, new alternative refrigerants are being developed. In this study, evaporation heat transfer characteristics of carbon dioxide flowing upward in a vertical tube have been investigated by experiment. Before the test section, a pre-heater is installed to adjust the inlet quality of the refrigerant to a desired value. A smooth tube with outer diameter of 5 mm and length of 1.44 m was selected as a test tube. The test was conducted at mass fluxes of 212 to 530 kg/$m^2s$, saturation temperature of -5 to 20$^{\circ}C$, and heat fluxes of 20 to 45 kW/$m^2$. As the vapor quality and mass fluxes increase, the heat transfer coefficients of carbon dioxide are decreased, and the heat transfer coefficients increase when the heat fluxes and saturation temperatures increase.

  • PDF

수평관내 이산화탄소의 증발 압력강하 (Evaporation pressure drop of $CO_2$ in a horizontal tube)

  • 이동건;손창효;오후규
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권5호
    • /
    • pp.552-559
    • /
    • 2005
  • The evaporation pressure drop of $CO_2$ (R-744) in a horizontal tube was investigated experimentally. The experiments were conducted without oil in a closed refrigerant loop which was driven by a magnetic gear pump. The main components of the refrigerant loop are a receiver, a variable-speed pump. a mass flow meter, a pre-heater and evaporator (test section). The test section consists of a smooth. horizontal stainless steel tube of 7.75 mm inner diameter. The experiments were conducted at mass flux of 200 to $500\;kg/m^{2}s$, saturation temperature of $-5^{\circ}C\;to\;5^{\circ}C$. and heat flux of 10 to $40\;kW/m^2$. The test results showed the evaporation pressure drop of $CO_2$ are highly dependent on the vapor qualify, heat flux and saturation temperature. The evaporation pressure drop of $CO_2$ is very lower than that of R-22. In comparison with test results and existing correlations. the best fit of the present experimental data is obtained with the correlation of Choi et al. But existing correlations failed to predict the evaporation pressure drop of $CO_2$. Therefore, it is necessary to develop reliable and accurate predictions determining the evaporation pressure drop of $CO_2$ in a horizontal tube.

배플에 의한 개방챔버 내부 유동의 영향에 관한 연구 (A Study on Effects of the Fluid Flow Inner the Open Chamber by Baffle)

  • 노병수;최주열;정하균;최상범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제39권3호
    • /
    • pp.255-260
    • /
    • 2015
  • 플래시증발현상은 개방챔버 내의 온도, 압력, 수위 그리고 배플 등에 영향을 받는다. 이 연구에서 PIV 실험은 최적의 배플 위치와 높이에 대한 개방챔버 내의 유동특성을 확실하게 시행하였다. 배플은 개방챔버 내의 재순환 흐름, 수력 도약 그리고 유동특성에 상당한 영향을 주었다. 그리고 레이놀즈수의 영향은 미미하였다. 최적의 배플높이는 h/H=1.5였고, 최적의 배플위치는 개방챔버 내부 입구로부터 x/H=1.5부근 이었다.

열교환기 형태에 따른 이산화탄소용 가스쿨러와 증발기의 성능비교 (The Performance Comparison of $CO_2$ Gascooler and Evaporator with Heat Exchanger Type)

  • 배경진;조홍현
    • 한국지열·수열에너지학회논문집
    • /
    • 제6권2호
    • /
    • pp.15-22
    • /
    • 2010
  • The natural refrigerants have used into HVAC equipments because the CFCs and HFCs have some environmental problems like high ODP and GWP. The carbon dioxide has small effect on the environmental problem but also good thermodynamics properties. In this study, the simulation study on the performance and characteristics of a $CO_2$ gascooler and evaporator using a fin-tube and microchannel heat exchanger has been conducted. Besides, the comparison of performance with operating condition was carried out in order to apply to the $CO_2$ heat pump system. As a result, the front sizes of a gascooler and evaporator using a microchannel were decreased by 63% and 58%, respectively, compared to those using a fin-tube. The performance of the fin-tube gascooler and evaporator were more responsive to the variation of operating conditions compared to that of microchannel. The pressure drop of a fin-tube heat exchanger was higher than that of a microchannel one.

관경별 탄화수소계 냉매의 증발 열전달에 관한 특성평가 (Study on Evaporating Heat Transfer of HCs Refrigerants by Changing of Tube Diameter)

  • 이광배;이호생;문춘군;김재돌;윤정인
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2005년도 후기학술대회논문집
    • /
    • pp.41-42
    • /
    • 2005
  • The experimental apparatus has been set-up as a conventional vapor compression type heat pump system. The test section is a horizontal double pipe heat exchanger. A tube diameter of 12.70 mm, 9.52 mm, 6.35 mm with 1.78 mm,1.52 mm,1.4 mm wall thickness each is used for this investigation. The local evaporating heat transfer coefficients of hydrocarbon refrigerants were superior to that of R-22. and the maximum increasing rate of heat transfer coefficient was found in R-1270. The average evaporating heat transfer coefficient increased with the increase of the mass velocity and it showed the higher values in hydrocarbon refrigerants than R-22. The highest evaporating heat transfer coefficient of all refrigerants was shown in a tube diameter of 6.35 mm with same mass flux.

  • PDF

냉장고용 핀-튜브 증발기의 착상 성능해석에 관한 연구 (Numerical Analysis on the Frosting Performance of a Fin-tube Evaporator for a Refrigerator)

  • 이무연;이호성;장용희;김용찬
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.307-316
    • /
    • 2008
  • The objective of this study is to provide numerical and experimental data that can be used to investigate the performance characteristics of a flat plate fin-tube evaporator in household and commercial refrigerators under frosting conditions. Computer simulations with variations of operating conditions such as air inlet temperature, relative humidity, and geometries were performed to find out optimal design parameters of a fin-tube evaporator for household and commercial refrigerators. The tube-by-tube method was used in the simulation and the frost growth model was considered under frosting conditions. The developed analytical model predicted the decreasing rates of heat transfer capacity and air flow rate ratio within ${\pm}$10% compared to the experimental results for a refrigerator under real operating conditions. As a result, the frost thickness at $3^{\circ}C$ & 80% is increased 40% than that of $-3^{\circ}C$ & 80%, and the frost thickness at $3^{\circ}C$ & 90% is increased 30% than that of $3^{\circ}C$ & 60%. Accordingly, the operating time of the evaporator in the refrigerator was reduced with the increase of the decreasing rate of air flow rate ratio at each condition.

이산화탄소/프로판 혼합냉매의 수평평활관 및 마이크로 핀관에서의 증발열전달에 관한 실험적 연구 (Experimental Studies on the Evaporative Heat Transfer Characteristics of CO2/Propane Refrigerant Mixtures in Horizontal Smooth and Micro-fin Tubes)

  • 조진민;김용진;김민수
    • 대한기계학회논문집B
    • /
    • 제32권4호
    • /
    • pp.290-299
    • /
    • 2008
  • Evaporation heat transfer characteristics of $CO_2$/propane mixtures in horizontal smooth and micro-fin tubes have been investigated by experiment. The experiments were carried out for several test conditions of mass fluxes, heat fluxes, compositions of $CO_2$/propane refrigerant mixtures and tube geometries. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Heat transfer coefficient data during evaporation process of $CO_2$/propane mixtures were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 mm, respectively. The tests were conducted at mass fluxes of 318 to 997 $kg/m^2s$, heat fluxes of 6 to 20 $kW/m^2$ and for several mixture compositions (100/0, 75/25, 50/50, 25/75, 100/0 by wt% of $CO_2$/propane). The differences of heat transfer characteristics between smooth and micro-fin tubes for various compositions of $CO_2$/propane refrigerant mixtures and the effect of mass flux, and heat flux on enhancement factor (EF) and penalty factor (PF) were presented.

직접접촉식 막증발법에서의 막 젖음 현상에 관한 연구 (The Study of Wetting in Direct Contact Membrane Distillation)

  • 신용현;구재욱;한지희;이상호
    • 한국유체기계학회 논문집
    • /
    • 제17권2호
    • /
    • pp.30-34
    • /
    • 2014
  • Membrane distillation (MD) is a thermal driven separation process in which separation a hydrophobic membrane is a barrier for the liquid phase, letting the vapor phase pass through the membrane pores. Therefore, a porous and hydrophobic membrane should be used in membrane distillation. MD cannot work if water penetrates into the pores of the membrane (membrane wetting). Accordingly, it is necessary to prevent wetting of MD membranes and to remove water inside the pores of the wetted membranes if possible. In this context, our study aimed to develop methods to recover wetted membranes in MD processes. Poly-vinylidene fluoride (PVDF) membranes were used in this study. A laboratory-scale direct contact MD (DCMD) system was used to examine the effect of operating parameters on wetting. For dewetting the wetted membranes, specific techniques including the use of high temperature air were applied. The performances of the membranes before and after dewetting were compared in terms of flux, salt rejection and liquid entry pressure(LEP). The surface morphology of dewetted membrane was confirmed by scanning electron microscope (SEM).

수평관내 이산화탄소의 증발 열전달과 압력강하 (Evaporation Heat Transfer and Pressure Drop of Carbon Dioxide In a Horizontal Tube)

  • 손창효
    • 한국수소및신에너지학회논문집
    • /
    • 제18권2호
    • /
    • pp.189-196
    • /
    • 2007
  • The evaporation heat transfer coefficient and pressure drop of $CO_2$(R-744) in a horizontal tube was investigated experimentally. The main components of the experimental apparatus are a receiver, a variable-speed pump, a mass flow meter, a pre-heater and an evaporator(test section). The test section consists of a horizontal stainless steel tube of 4.57 mm inner diameter. The experiments were conducted at mass flux of $200{\sim}1000\;kg/m^2s$ saturation temperature of $0{\sim}20^{\circ}C$, and heat flux of $10{\sim}40\;kW/m^2$. The test results showed that the heat transfer coefficient of $CO_2$ has a greater effect on nucleate boiling more than convective boiling. Mass flux of $CO_2$ does not affect nucleate boiling too much. In comparison with test data and existing correlations, All of the existing correlations for the heat transfer coefficient underestimated the experimental data. However lung et al.'s correlation showed a good agreement with the experimental data. The evaporation pressure drop of $CO_2$ increases with increasing mass flux and decreasing saturation temperature. When comparison between the experimental pressure drop and existing correlations. Existing correlations failed to predict the evaporation pressure drop of $CO_2$.