• Title/Summary/Keyword: 증기 터빈

Search Result 308, Processing Time 0.045 seconds

Characteristics of Blade Force by Nozzle Passing Steam (노즐 통과 증기에 의한 블레이드에 작용하는 힘 특성)

  • Lee, Byounghak;Park, Jongho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.10
    • /
    • pp.895-901
    • /
    • 2013
  • Last blades of LP turbine in nuclear power plant are the highly damaged part and suffered from nozzle steam impulses during the turbine operation. Nozzle impulse is known as a common cause of damage or failure in the turbine blade and results from steam flow distortions due to uneven steam flow patterns between the stationary blade vanes. If impulse force was continuously acting on the blade for a long time, crack or wear will occur in weak parts such as root. So, it is important to know variation of nozzle impulse during the blade moving. But there is no way to measure and estimate the magnitude and direction of nozzle impulse. Therefore, this study was performed to know the variation of nozzle impulse force according to the positions of the blade and to obtain blade equivalent force and torque. This results can be used for blade stress estimation.

A Stochastic Analysis in Steam Turbine Blade Steel Using Monte Carlo Simulation (몬테카를로 시뮬레이션을 이용한 증기 터빈블레이드재의 확률론적 해석)

  • Kim, Chul-Su;Jung, Hwa-Young;Kang, Myung-Su;Kim, Jung-Kyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.11
    • /
    • pp.2421-2428
    • /
    • 2002
  • In this study, the failure probability of the degraded LP turbine blade steel was performed using the Monte Carlo simulation to apply variation of applied stress and strength. For this purpose, applied stress under the service condition of steady state was obtained by theoretical stress analysis and the maximum Von-Mises stress was 219MPa. The fatigue strength under rotating-bending load was evaluated by the staircase method. Furthermore, 3-parameter Weibull distribution was found to be most appropriate among assumed distributions when the probabilistic distributions of tensile and fatigue strength were determined by the proposed analysis. The failure probability with various loading conditions was derived from the strength-stress interference model and the characteristic factor of safety was also estimated.

A Study on the Vibration Reduction Method for Main steam Piping in Nuclear Power Plant (원자력발전소 주증기관의 진동감쇠 연구)

  • Kim, Yeon-Whan;Kim, Jong-Yeob;Lee, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.215-220
    • /
    • 1996
  • 원자력발전소의 주증기관은 증기발생기와 터빈을 연결하는 주요 계통으로서 여기서 발생하는 배관진동은 주요기기의 연결부, 밸브, 배관지지물과 건물 등에 복합적인 반복하중을 가하여 관련 지지물 및 구조물에 열화현상을 발생시켜 발전소의 안전운전에 심각한 영향을 초래할 가능성을 항상 내포하고 있다. 그럼에도 불구하고 배관진동 대책은 대부분 지지물을 추가로 설치하여 진동준위만 낮추고 있는 실정이다. 따라서 구체적인 배관진동의 예측, 측정 및 평가, 감쇠방안에 이르는 종합적이고 체계적인 연구가 요구되고 있다. 본 연구에서는 지지물의 열화현상 및 부분적인 파손으로 진동준위가 높아진 것으로 추정되는 원자력발전소 주증기관의 진동특성 및 요인을 분석하여 진동감쇠 방안을 도출하고 검증함으로써 배관 및 주변 구조물의 건전성을 확보하고 설비의 신뢰성을 확보하고자 하였다. 이를 위하여 주증기관을 모델링하여 해석하였으며, 발전소의 기동 및 정상운전시의 진동준위를 측정하였다. 또한 발전소의 정진기간중 일부 배관계에 대한 실험적 모우드 해석을 수행하였다. 여러가지 진동감쇠 방안을 검토하여 탄성지지 및 에너지 흡수효과를 동시에 발휘할 수 있는 특수 지지물(WEAR$_{TM}$)을 설치하는 방안을 도출하였으며, 현장에 설치한 후 배관의 진동상태를 확인함으로서 효과적인 방안임을 검증하였다.

  • PDF

The Generating Power Control of Coal-Fired Power Plant using Modeling Method (모델링 기법을 이용한 석탄화력발전소 발전기 출력제어)

  • Lim, Geon-Pyo;Kim, Ho-Yol
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.403-404
    • /
    • 2008
  • 자원의 고갈과 각종 환경규제 및 정부의 전력거래 방침 등으로 인해 점점 발전소에서는 전력 계통에 대한 신뢰도 및 전기품질을 유지하기가 어려워지고있다. 발전소의 부하대별 주요 운전 설계값은 효율과 바로 직결되는 사항으로 각 부하별로 온도와 압력 등 운전설계값을 최적의 상태로 유지하는 것은 발전소 수명과 발전효율, 전력거래 등에 있어 중요한 요소들이다. 전력시장에 진입하는 발전소는 전력계통의 갑작스런 불안성 상황이나 전력거래소 요청시 경사변동폭, 출력변통율, 무효전력 출력, 자동발전제어, 주파수조절량 확보 등을 수행할 수 있어야 한다. 본 논문에서는 고급공정제어기를 이용하여 운전설계계값을 효과적으로 제어 하면서 기존의 제어로직보다 전력계통상에서 요구되는 발전기 출력을 최대한 신속히 제어하는 과정을 기술하였다. 우선 보일러 마스터와 터빈 마스터, 급수 마스터로 구성된 제어로직을 설계한 뒤 이들 마스터에 대한 발전기 출력, 주증기 압력, 기수분리기 출구온도 각각의 영향을 모델링 기법을 이용하여 적합한 모델을 구했다. 각각의 모델을 고급공정제어기에 적용하고 발전기 출력제어에 대한 기존의 발전소 응답보다 좀 더 효율적이고 실제적용이 가능한 결과를 얻을 수 있도록 튜닝을 시행했으며 그 과정과 결과를 기술했다.

  • PDF

Study on the Characteristics of the Upper Pad Fluttering in a Large Tilting fad Journal Bearing Using a Steam Turbine (증기터빈용 대형 틸팅패드 저어널베어링의 상부패드 Fluttering 특성 연구)

  • Yang, Seong-Heon;Park, Heui-Joo;Park, Chul-Hyun;Kim, Chae-Sil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.1022-1027
    • /
    • 2002
  • This paper describes the fluttering characteristics of the upper pad in a tilting pad journal bearing(6-pad, LOP type) using a steam turbine. In order to investigate the phenomena of the upper pad fluttering experimentally, the absolute vibration of the upper pads the relative vibration between bearing and shaft and the circumferential distribution of the film thickness are measured under the different values of supply oil flow rate, shaft speed and bearing load. It can be known that the fluttering mechanism of the upper pads has a tendency of the self-excited vibration from the study of fluttering frequencies and amplitudes with the change of shaft speed. furthermore, it is observed that the incipient upper pad fluttering velocity is increased by the increase of oil supply flow rate and fluttering amplitude of the upper pads is increased by the decrease of the oil flow rate and by the increase of the bearing load.

  • PDF

A Study On Steam Turbine Valve Controls In Power Plant (발전소 증기터빈 밸브제어에 관한 고찰)

  • Choi, In-Kyu;Jeong, Chang-Ki;Kim, Byoung-Chul;Kim, Jong-An;Woo, Joo-Hee
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2640-2642
    • /
    • 2005
  • Servovalves are widely used in industrial areas in order to control the position of large steam valves which regulate steam flow to prime mover. We must control the position of large steam valves to regulate flow of working fluids in the process. The small pilot valves are used to regulate the large main valves in case that the pressure of control fluids supplied to servovalves is low about $12kg/cm^2$. But, in case that the pressure of control fluids supplied to servovalves is high enough about $110kg/cm^2$, the pilot valves are not needed and servovalves can control directly the large main valves due to its large working forces. Additionally, the basic structures of armature coil should be different according to the types of control system even in the same servovalve. This paper compares and describes some integral types of flow control.

  • PDF

Reduction of the Reheater Spray for Coal Fired Thermal Power Plant (석탄화력발전소의 재열저감수 저감방안)

  • Kim, Hyung-Deok;Koh, Churl-Kyun;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.9 no.2
    • /
    • pp.46-50
    • /
    • 2013
  • When four operation parameters are adjusted, the temperature of reheater steam is around the designed operator temperature and the decrease of reheater spray flow rate is achieved. As a result, the decrease of thermal efficiency also can be prevented. To keep the reheater exit temperature on the designed value and decrease the use of reheater spray flow rate, the control of four operation parameters is considered and applied in the operation of a thermal power plant.

  • PDF

Development of Flexible Packing Ring in Steam Turbine for Reduction of Leakage by using CFD Flow Analysis (CFD 유동해석을 이용한 누설 저감을 위한 증기터빈용 플렉시블 패킹링 개발)

  • Kim, Jin Hyung;Bae, Jun Ho;Lee, Chang-Ryeol;Kim, Chul
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.7
    • /
    • pp.741-748
    • /
    • 2013
  • A conventional packing ring was designed with a large clearance to prevent damage due to the vibration of the rotor, which can lead to an increase in steam leakage. In this study, a flexible packing ring using winding springs was developed to prevent damage to the rotor teeth by minimizing vibration, while maintaining a smaller clearance than that of conventional rotor designs. Theoretical analysis and finite element analysis (FEA) were used to design the winding spring to satisfy the specified allowable stress limit and minimum load requirements. The shape of the winding spring was designed by applying curves to the center and end parts of a flat spring. Computational fluid dynamics (CFD) analysis was used to predict the leakage of the flexible packing ring. Flow rate measurement tests were performed to verify the leakage reduction efficiency and the reliability of the CFD analysis.

Reduction of Leakage through Labyrinth Seal in a Steam Turbine by Modification of the Teeth Shape (증기터빈 래비린스 실의 형상 개선을 통한누설량 저감에 관한 연구)

  • Ahn, Jung-Hyeon;Moon, Sun-Ae;Moon, Seung-Jae;Lee, Jae-Heon;Yoo, Hoseon
    • Plant Journal
    • /
    • v.5 no.2
    • /
    • pp.56-61
    • /
    • 2009
  • In this study, the numerical study has been carried out to analyze the leakage in a steam turbine labyrinth seal. We modified tooth shape of the labyrinth seal and find out the difference of leakage in this study. Original model is straight labyrinth seal and its modified model is slanted labyrinth seal. The numerical analyses are implemented on two models. The numerical results show that each leakage of tooth shape are found to be 0.4781 kg/s and 0.4485 kg/s, respectively. The slanted labyrinth seal confines in a steam better than straight labyrinth seal. Since actual clearance of the stream function in the slant model is smaller than that of the straight model.

  • PDF

A Study of Bearing Oil Whip Treatment in 300MW Steam Turbine with Oil Temperature Change (300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구)

  • Hwang, Dal-Y.;Kim, Hwa-Y.;Moon, Seung-J.;Lee, Jae-H.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03b
    • /
    • pp.244-247
    • /
    • 2008
  • The phenomena of oil whip in steam turbine takes place for the un-balancing force between rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, It needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF