• Title/Summary/Keyword: 증기 압축시스템

Search Result 53, Processing Time 0.031 seconds

Analysis of the Influence of Anti-icing System on the Performance of Combined Cycle Power Plants (가스터빈 결빙방지 시스템이 복합화력발전 시스템의 성능에 미치는 영향)

  • Moon, Seong Won;Kim, Jeong Ho;Kim, Tong Seop
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.6
    • /
    • pp.19-25
    • /
    • 2016
  • Anti-icing is important in gas turbines because ice formation on compressor inlet components, especially inlet guide vane, can cause performance degradation and mechanical damages. In general, the compressor bleeding anti-icing system that supplies hot air extracted from the compressor discharge to the engine intake has been used. However, this scheme causes considerable performance drop of gas turbines. A new method is proposed in this study for the anti-icing in combined cycle power plants(CCPP). It is a heat exchange heating method, which utilizes heat sources from the heat recovery steam generator(HRSG). We selected several options for the heat sources such as steam, hot water and exhaust gas. Performance reductions of the CCPP by the various options as well as the usual compressor bleeding method were comparatively analyzed. The results show that the heat exchange heating system would cause a lower performance decrease than the compressor bleeding anti-icing system. Especially, the option of using low pressure hot water is expected to provide the lowest performance reduction.

Performance Test for High Efficient Heat Pump System using Seawater Heat Source and Exhaust Energy (해수열원 및 폐열이용 고성능 열펌프 시스템 성능실험)

  • 최광일;오종택;오후규
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.15 no.12
    • /
    • pp.979-986
    • /
    • 2003
  • The performance characteristics of heating and cooling operation for a heat pump system using seawater heat source and exhaust energy are presented. The heat pump system is made of a waste heat recovery system and a vapor compression refrigeration system. The working fluid is R-22. The heat pump system COPs are measured during heating and cooling operation modes, and the resultant COPs were 9.7 and 7.9, respectively, which are three times higher than those of the heat pump itself. Therefore, the performance of the heat pump system using exhaust energy is excellent compared to that of a general heat pump. The experimental data can be effectively used for the design of the high efficient heat pump using a seawater heat source.

에스코 국내소식

  • Korean association for escos
    • The Magazine for Energy Service Companies
    • /
    • s.37
    • /
    • pp.86-89
    • /
    • 2005
  • 삼성에버랜드 에너지절감형 '증기재압축시스템' 개발 · 상용화 성공/ 삼천리 산업기술대 열병합 도입 계약 체결/ LS산전 호남화력에 FD Fan 고압 인버터 설치/ (주)하이세스 절전기 '하이세스' 출시/ 현대차 김관중 동력팀장 '움직이면 커지는 엔트로피 이해' 책자 발간/ 산업자원위원회 에너지기본법 통과/ (주)케너텍 전기판매, 민간 사업자 1호 달성/ 일진전기(주) 최진용 대표 '산업포장'/ 포스코 에너지절감으로 원가 경쟁력 향상/ 울산시 삼성석화 등 에너지 절약 우수업체 선정/ 시민사회 '에너지를 생각하는 사람들의 알찬 모임' 화제/ 신재생에너지센터 공기관 대상 신재생에너지의무화 사업 설명회/ 에너지관리공단 열병합발전 설계자 대상 교육 실시

  • PDF

Experimental Study on Optimization of Absorber Configuration in Compression/Absorption Heat Pump with NH3/H2O Mixture (NH3/H2O 혼합냉매를 사용한 압축/흡수식 히트펌프 시스템의 흡수기 최적화에 관한 실험적 연구)

  • Kim, Ji-Young;Kim, Min-Sung;Baik, Young-Jin;Park, Seong-Ryong;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • This research aims todevelopa compression/absorption hybrid heat pump system using an $NH_3/H_2O$ as working fluid.The heatpump cycle is based on a combination of compression and absorption cycles. The cycle consists of two-stage compressors, absorbers, a desorber, a desuperheater, solution heat exchangers, a solution pump, a rectifier, and a liquid/vapor separator. The compression/absorption hybrid heat pump was designed to produce hot water above $90^{\circ}C$ using high-temperature glide during a two-phase heat transfer. Distinct characteristics of the nonlinear temperature profile should be considered to maximize the performance of the absorber. In this study, the performance of the absorber was investigated depending on the capacity, shape, and arrangementof the plate heat exchangers with regard tothe concentration and distribution at the inlet of the absorber.

Studies on the Performance Variation of a Variable Speed Vapor Compression System under Fault and Its Detection and Diagnosis (가변속 증기압축 냉동시스템에서 고장시의 성능변화와 고장 감지 및 진단에 관한 연구)

  • Kim Minsung;Kim Min Soo
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.1
    • /
    • pp.47-55
    • /
    • 2005
  • An experimental study has been peformed to develop a scheme for fault detection and diagnosis(FDD) in a vapor compression refrigeration system. This study is to analyze fault effect on the system performance and to find efficient diagnosis rules for easy determination of abnormal system operation. The refrigeration system was operated with a variable speed compressor to modulate cooling capacity. The FDD system was designed to consider transient load conditions. Four major faults were considered, and each fault was detected over wide operating load range by separating the system response to the load change. Rule-based method was used to diagnose and classify the system faults. From the experimental results, COP degradation due to the faults in a variable speed system is severer than that in a constant speed system. The method developed in this study can be used in the fault detection of refrigeration systems with a variable speed compressor.

Magnetic Refrigeration Apparatus at Room Temperature Using Concentric Halbach Cylinder Permanent Magnets (동심 원통형 Halbach 배열 영구자석을 이용한 상온 자기냉동장치)

  • Lee, Changho;Lee, Jong Suk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.1
    • /
    • pp.47-51
    • /
    • 2017
  • Recently international cooperations are formed to deal with the environmental pollution of the atmosphere generated by the vapor compression refrigeration system. A refrigeration technique, which can replace existing CFC refrigerants that are the main cause of environmental contamination, has received greater attention. Magnetic refrigeration is a refrigeration technique using the magnetocaloric effect of the magnetic material, and is an eco-friendly refrigeration technology using the solid refrigerant instead of CFC refrigerants. Also it is regarded as an efficient refrigeration system to generate temperature difference between high and low sides using the temperature change of magnetic refrigerants according to the change of magnetic field, instead of using power-consuming and noisy compressor. In this paper, we introduce the magnetic refrigeration apparatus using concentric Halbach cylinder permanent magnets and the experimental results using the apparatus.

Experimental Study on Compression/Absorption High-Temperature Hybrid Heat Pump with Natural Refrigerant Mixture (천연혼합냉매를 이용한 압축/흡수식 고온히트펌프의 실험적 연구)

  • Kim, Ji-Young;Park, Seong-Ryong;Baik, Young-Jin;Chang, Ki-Chang;Ra, Ho-Sang;Kim, Min-Sung;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1367-1373
    • /
    • 2011
  • This research concerns the development of a compression/absorption high-temperature hybrid heat pump that uses a natural refrigerant mixture. Heat pumps based on the compression/absorption cycle offer various advantages over conventional heat pumps based on the vapor compression cycle, such as large temperature glide, temperature lift, flexible operating range, and capacity control. In this study, a lab-scale prototype hybrid heat pump was constructed with a two-stage compressor, absorber, desorber, desuperheater, solution heat exchanger, solution pump, liquid/vapor separator, and rectifier as the main components. The hybrid heat pump system operated at 10-kW-class heating capacity producing hot water whose temperature was more than $90^{\circ}C$ when the heat source and sink temperatures were $50^{\circ}C$. Experiments with various $NH_3/H_2O$ mass fractions and compressor/pump circulation ratios were performed on the system. From the study, the system performance was optimized at a specific $NH_3$ concentration.

Study on Analysis of Flow Field in Ejector Suction Pipe (이젝터 흡입관의 유동장 분석에 관한 연구)

  • Kim, Noh-Hyeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.10
    • /
    • pp.989-999
    • /
    • 2012
  • An ejector is a fluid transportation device that operates based on the principle that a high-pressure fluid is spouted through a driving pipe and the pressure of a low-pressure fluid is increased through exchange of momentum with a low-pressure gas. Steam-steam ejectors have been widely used for suction, mixture, and dehydration. They can be easily used in places where fluid moves and expenses are reasonable. In addition, such ejectors are a semi-permanent fluid device that requires little maintenance. In this study, we present an optimized design by analyzing what cannot be obtained through experiments in order to improve the device performance, analyze general contents of a flow by acquiring exact test data on specific and interpretative areas using more advanced experimental techniques, and identify the flow characteristics of a branch pipe by examining the validity of experiments using computer hydrodynamics simulations.

Design Criteria Derivation of Supercritical Carbon Dioxide Power Cycle based on Levelized Cost of Electricity(LCOE) (전력단가추정기반 초임계 이산화탄소 발전 시스템 최적 설계 인자 도출)

  • Park, Sungho;Cha, Jaemin;Kim, Joonyoung;Shin, Junguk;Yeom, Choongsub
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.441-447
    • /
    • 2017
  • The economic analysis for the power plant developed in the conceptual design phase is becoming more important and, research on process optimization for process development that meets the target economic is actively carried out. In the filed of power generation systems, economic assessment methods to predict the levelized cost of electricity (LCOE) has been widely applied for comparing economic effect quantitatively. In this paper, the platform that design criteria of key component required to optimize economic of power cycle can be calculated reversely was established roughly and design criteria of the key equipment (Compressor, turbine, heat exchanger) required to meet the target LCOE (the LCOE of supercritical steam Rankine cycle) was derived when the supercritical $CO_2$ power cycle is applied to the coal-fired power plant.

Technology for Real-Time Identification of Steady State of Heat-Pump System to Develop Fault Detection and Diagnosis System (열펌프의 고장감지 및 진단시스템 구축을 위한 실시간 정상상태 진단기법 개발)

  • Kim, Min-Sung;Yoon, Seok-Ho;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.4
    • /
    • pp.333-339
    • /
    • 2010
  • Identification of a steady state is the first step in developing a fault detection and diagnosis (FDD) system of a heat pump. In a complete FDD system, the steady-state detector will be included as a module in a self-learning algorithm, which enables the working system's reference model to "tune" itself to its particular installation. In this study, a steady-state detector of a residential air conditioner based on moving windows was designed. Seven representative measurements were selected as key features for steady-state detection. The optimized moving-window size and the feature thresholds were decided on the basis of a startup-transient test and no-fault steady-state test. Performance of the steady-state detector was verified during an indoor load-change test. In this study, a general methodology for designing a moving-window steady-state detector for applications involving vapor compression has been established.