• Title/Summary/Keyword: 중합두께

Search Result 143, Processing Time 0.02 seconds

Implant stability evaluation according to the bone condition, fixture diameter and shape in the osseointegration simulated resin model (골유착 재현 레진 모델에서 골 상태 및 임플란트 형태에 따른 임플란트 안정성에 관한 연구)

  • Kwon, Taek-Ka;Yeo, In-Sung;Kim, Sung-Hun;Han, Jung-Suk;Lee, Jai-Bong;Yang, Jae-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.49 no.2
    • /
    • pp.128-137
    • /
    • 2011
  • Purpose: Resonance frequency analysis, Periotest, and removal torque (RT) test were known as the methods to assess implant stability. The results of these methods are affected by the bone condition, implant diameter and shape. The purpose of this study is to access the meaning and the correlationship of the resonance frequency analysis, Periotest and RT test in osseointegration simulated acrylic resin when the engaged bone thickness and peri-implant bone defect are changed. Materials and methods: To simulate osseointegration, the fixture was fixed to an aluminum mold with a screw. Acrylic resin powder and liquid were poured into the mold for polymerization. The engaged resin thickness with implant was controlled. Simulated cortical bone thicknesses were 1, 3, 5 and 10 mm. Additional 1, 3 and 5 mm peri-implant bone defects were simulated. Three types of implants were used; 4 mm diameter implants of straight shape, 4 mm diameter implants of tapered shape and 5 mm diameter implants of tapered shape. Five fixtures per each type were tested in respective bone condition. Resonance frequency analysis and Periotest were evaluated in all bone conditions. Peak removal torque was measured at simulated cortical bone thicknesses of 1 and 3 mm. The statistical analysis was performed with the Kruskal-Wallis test, Mann-Whitney U test, and Spearman test using a 95% level of confidence. Results: With increasing engaged bone depth, the Implant Stability Quotient (ISQ) values increased and the Periotest values (PTVs) decreased (P<.001, P<.001). With increasing peri-implant bone defect, ISQ values decreased and PTVs increased (P<.001). When the diameter of implant increased, ISQ values increased and Periotest values (PTV) decreased (P<.001). There was a strong correlation between ISQ values and PTVs (r = -0.99, P<.001). Furthermore, the peak removal torque values had weak correlations with both ISQ values and PTVs (r = 0.52, P<.001 ; r = -0.52, P<.001). Conclusion: This study confirmed favorable implant stability with increasing engaged bone depth and implant diameter and decreasing peri-implant bone defect. ISQ values and PTVs showed strong correlation with each other and not with the peak removal torque values.

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Proceedings of the KACD Conference
    • /
    • 2008.05a
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel. undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesio-distally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference on fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even of that portion consists of mainly enamel and a little dentin structure.

  • PDF

FRACTURE RESISTANCE OF THE THREE TYPES OF UNDERMINED CAVITY FILLED WITH COMPOSITE RESIN (복합 레진으로 수복된 세 가지 첨와형태 와동의 파절 저항성에 관한 연구)

  • Choi, Hoon-Soo;Shin, Dong-Hoon
    • Restorative Dentistry and Endodontics
    • /
    • v.33 no.3
    • /
    • pp.177-183
    • /
    • 2008
  • It was reported that esthetic composite resin restoration reinforces the strength of remaining tooth structure with preserving the natural tooth structure. However, it is unknown how much the strength would be recovered. The purpose of this study was to compare the fracture resistance of three types of undermined cavity filled with composite resin with that of non-cavitated natural tooth. Forty sound upper molars were allocated randomly into four groups of 10 teeth. After flattening occlusal enamel, undermined cavities were prepared in thirty teeth to make three types of specimens with various thickness of occlusal structure (Group $1{\sim}3$). All the cavity have the 5 mm width mesiodistally and 7 mm depth bucco-lingually. Another natural 10 teeth (Group 4) were used as a control group. Teeth in group 1 have remaining occlusal structure about 1 mm thickness, which was composed of mainly enamel and small amount of dentin. In Group 2, remained thickness was about 1.5 mm, including 0.5 mm thickness dentin. In Group 3, thickness was about 2.0 mm, including 1 mm thickness dentin. Every effort was made to keep the remaining dentin thickness about 0.5 mm from the pulp space in cavitated groups. All the thickness was evaluated with radiographic Length Analyzer program. After acid etching with 37% phosphoric acid, one-bottle adhesive (Single $Bond^{TM}$, 3M/ESPE, USA) was applied following the manufacturer's recommendation and cavities were incrementally filled with hybrid composite resin (Filtek $Z-250^{TM}$, 3M/ESPE, USA). Teeth were stored in distilled water for one day at room temperature, after then, they were finished and polished with Sof-Lex system. All specimens were embedded in acrylic resin and static load was applied to the specimens with a 3 mm diameter stainless steel rod in an Universal testing machine and cross-head speed was 1 mm/min. Maximum load in case of fracture was recorded for each specimen. The data were statistically analyzed using one-way analysis of variance (ANOVA) and a Tukey test at the 95% confidence level. The results were as follows: 1. Fracture resistance of the undermined cavity filled with composite resin was about 75% of the natural tooth. 2. No significant difference in fracture loads of composite resin restoration was found among the three types of cavitated groups. Within the limits of this study, it can be concluded the fracture resistance of the undermined cavity filled with composite resin was lower than that of natural teeth, however remaining tooth structure may be supported and saved by the reinforcement with adhesive restoration, even if that portion consists of mainly enamel and a little dentin structure.

Preparation of Acryl Binder with Silane Type Chain Transfer Agent (실란계 사슬 이동제를 사용한 아크릴 바인더의 제조)

  • Kim, Jin-Gon;Shin, Min-Jae;Shin, Jae-Sup
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.351-356
    • /
    • 2012
  • Acryl binder is a representative organic additive for the manufacture of the display electronic equipment. Acryl binder is usually synthesized by radical copolymerization. Glycidyl methacrylate (GMA), methyl methacrylate (MMA), and methacrylic acid (MAA) were used in this copolymerization of acryl binder. In this study the silane type mercaptane compound was used as a chain transfer agent (CTA) to enhance the adhesion property of the acrylic binder. The CTA used in this experiment was (3-mercaptopropyl) trimethoxysilane (MPTMS). Molecular weight of the copolymer, thickness of the coating, transmittance, and adhesion property were measured. The molecular weight was controlled and the adhesion property was improved by using this silane type chain transfer agent.

Comparison of shrinkage according to thickness of photopolymerization resin for 3D printing (3D 프린팅용 광 중합 수지의 두께에 따른 수축 비교)

  • Kim, Dong-Yeon;Kim, Jae-Hong
    • Journal of Technologic Dentistry
    • /
    • v.43 no.1
    • /
    • pp.1-5
    • /
    • 2021
  • Purpose: To perform a comparative study on curing shrinkage according to the thickness of photopolymerization resin. Methods: Stainless steel molds of 2, 4, and 6 mm heights were prepared. The 2, 4, and 6 mm-height molds were classified as the 2H, 4H, and 6H groups, respectively. A photopolymerization resin was injected into the stainless steel mold. Photopolymerization was carried out using a photopolymer machine. During photopolymerization, the wavelength and intensity of 400~405 nm were set to 10, the highest intensity among 1~10. Photopolymerization was performed for 30 min per specimen (each group=10). The inner and outer areas of the specimen were measured. The data were analyzed using one-way ANOVA and Kruskal-Wallis H test (α=0.05). Results: In terms of the inner and outer diameters of the photopolymerization resin specimen, the 2H group contracted the most, whereas the 6H group contracted the least. A statistically significant difference was found between the groups (p<0.05). Conclusion: The amount of light irradiation of the photopolymerization resin must be adjusted according to the thickness.

The Effect of Reinforcing Materials on the Transverse Strength of Denture Base Resin (의치상 레진 강화재가 의치상 굽힘강도에 미치는 영향)

  • Lee, Jun-Sik;Song, Young-Gyun;Cho, In-Ho
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.28 no.4
    • /
    • pp.327-337
    • /
    • 2012
  • The object of this study was to find out the effect of various reinforcing materials including Quarts Splint$^{TM}$ Mesh on the transverse strength of the denture resin. QC-20 and Lucitone199$^{(R)}$ were used as the denture resin, and polyethylene fiber Ribbond$^{(R)}$, light curing quarts fiber Quarts Splint$^{TM}$ Mesh, metal mesh were used as the reinforcing materials. Ten specimens were fabricated for each group and the size of specimens was $2.0{\times}10.0{\times}65.0mm$. To compare the effect of resin thickness, additional specimens of $2.5{\times}10.0{\times}65.0mm$, $3.0{\times}10.0{\times}65.0mm$ were fabricated. In the control group, the transverse strength of Lucitone199$^{(R)}$ was significantly higher than that of QC-20(p<0.05). Among the specimens of 2.0 mm thickness fabricated with $Lucitone199^{(R)}$ and QC-20, they showed high transverse strength in the order of metal mesh, Quarts Splint$^{TM}$ Mesh, Ribbond$^{(R)}$, and control group. In the specimens of 2.0 mm, 2.5 mm thickness, the transverse strength of Quarts Splint$^{TM}$ Mesh were significantly higher than that of QC-20(p<0.05). But in the specimens of 3.0 mm thickness, there was no significant difference.

The evaluation of color and color difference according to the layering placement of Incisal shade composites on the body composites of the indirect resin restoration (간접 수복용 복합레진의 Incisal 색상 적층 두께에 따른 표면 색상 및 색차의 평가)

  • Park, Su-Jung;Lee, Han-Young;Nah, Myong-Yun;Chang, Hoon-Sang;Hwang, Yun-Chan;Oh, Won-Mann;Hwang, In-Nam
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.37-49
    • /
    • 2011
  • Objectives: The aim of this study was to evaluate the surface color of indirect resin restoration according to the layering placement of different shade of incisal composite. Materials and Methods: In this study, CIE $L^*a^*b^*$ value of 16 Body composite of Tescera ATL (Bisco, Schaumburg IL,USA) was measured by spectrophotometer (NF999, Nippon Denshuku, Japan), and compared to CIE $L^*a^*b^*$ value of Vitapan shade guide. Nine shade Incisal composite of Tescera ATL were buildup to 1 mm thickness on Body composites inlay block, and CIE $L^*a^*b^*$ value was measured. Incisal composite was ground to 0.5 mm thickness and CIE $L^*a^*b^*$ value was re-measured. Color difference between Body composite and Incisal composites layered on Body composite was calculated as a function of thickness. Results: Color difference between corresponding shade of Tescera Body composite and Vitapan shade guide was from 6.88 to 12.80. $L^*$ and $b^*$ value was decreased as layering thickness of Incisal composite on Body composite was increased. But, $a^*$ value did not show specific change tendency. Conclusions: Surface color difference between Body composites and Incisal composites layered on Body composite was increased as the layering thickness of Incisal composite increased (p < 0.05).

Analysis of Crustal Velocity Structure Beneath Gangwon Province, South Korea, Using Joint Inversion of Receiver Functions and Surface Wave Dispersion (수신함수와 표면파 분산의 연합 역산을 사용한 강원도 지역 하부의 지각속도구조 분석)

  • Jeong-Yeon Hwang;Sung-Joon Chang
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.277-291
    • /
    • 2023
  • To analyze the crustal velocity structures beneath 21 broadband seismic stations in Gangwon Province, South Korea, we first applied the H-κ stacking method to 139 teleseismic event data (Mw ≥ 5.8 and the epicentral distance of 30° - 90°) occurring between March 18, 2019 and December 31, 2022 to estimate the Moho depths and Vp/Vs ratios beneath each station. The Moho depths and Vp/Vs ratios from the H-κ stacking method range from 24.9 to 33.2 km depth and 1.695 - 1.760, respectively, and the estimated Vp/Vs ratios were applied to the joint inversion of receiver functions and surface wave dispersion to obtain 1-D crustal velocity models beneath each station. The resulting Moho depths range from 25.9 to 33.7 km depth, similar to the results from the H-κ stacking method. Moho depth results from the both methods are generally consistent with Airy's isostasy. The 1-D crustal velocity models confirm that the existence of 2 km thick low-velocity layers with P-wave velocities of 5 km/s or less at some stations in the Taebaeksan basin, and at the stations CHNB and GAPB in northern Gangwon Province, which are located above the Cenozoic sedimentary layer. The station SH2B, although not overlying a sedimentary layer, has a low P-wave velocity near the surface, which is probably due to various factors such as weathering of the bedrock. We also observe a velocity inversion with decreasing velocity with depth at all stations within 4 - 12 km depths, and mid-crustal discontinuities possibly due to density differences in the rocks at around 10 km depth below some stations.

A Study on the Electron Beam Crosslinking of Acrylic Pressure Sensitive Adhesives for Polarizer Film (전자선 조사를 통한 편광필름용 아크릴계 고분자의 가교화 반응에 대한 연구)

  • Park, Jung-Jin;Choi, Hong-June;Ko, Hwan-Soon;Jeong, Eun-Hwan;Youk, Ji-Ho
    • Polymer(Korea)
    • /
    • v.36 no.3
    • /
    • pp.344-350
    • /
    • 2012
  • New pressure sensitive adhesives (PSAs) for polarizer film were prepared by electron beam (e-beam) radiation to acrylic copolymers, and their adhesive properties were investigated. The acrylic copolymers were synthesized by free radical polymerization of $n$-butylacrylate (BA), 2-hydroxyethyl methacrylate (HEMA), and acrylic acid (AA). The acrylic copolymers were coated on PET release films to a thickness of 25 ${\mu}m$, laminated to polarizer films, and then radiated with e-beam at room temperature. Gel fractions of all the acrylic copolymers after e-beam radiation at 50 kGy were higher than 93%, and their crosslinking densities were increased with increasing the content of HEMA units. PSA prepared by e-beam radiation of acrylic copolymer synthesized with a feed ratio of BA/HEMA/AA = 89.5/10/0.5 (w/w/w) at a dose of 50 kGy exhibited the best adhesion performances in terms of peel strength, creep resistance, durability and reliability, and light leakage. It is expected that the preparation method of PSAs via e-beam irradiation will improve the producibility and workability of polarizer film for liquid crystal display.

Synthesis of Hollow Silica Particles from Sodium Silicate using Organic Template Particles (유기 주형 입자를 이용한 소디움 실리케이트로부터 중공형 실리카 입자 제조)

  • Lee, Chongmin;Kim, Jiwoong;Chang, Hankwon;Roh, Ki-Min;Jang, Hee Dong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.78-82
    • /
    • 2015
  • Hollow silica particles were prepared using sodium silicate and organic templates. Polystyrene latex (PSL) particles produced by dispersion polymerization were used as organic templates. PSL particles ranged from $1{\mu}m$ to $3{\mu}m$ in diameter were synthesized by adjusting the amount of 2,2'-azobisisobutyronitrile (AIBN). The PSL/$SiO_2$ core-shell particles were prepared by coating of silica nanoparticles originated from sodium silicate using sol-gel method. The organic templates were removed by the organic solvent, tetrahydrofuran (THF). Morphology of hollow silica particles was investigated with respect to types of the reaction medium and pH during the process. By changing the solvent from ethanol to water, hollow silica particles were successfully formed. Hollow silica particles with the uniform shell thickness were produced at low pH as well. The reflectivity of the as-prepared silica particles was measured in the range of the wavelength of UV and visible light. Hollow silica particles showed much better reflective properties than the commercial light reflector, Insuladd.