• 제목/요약/키워드: 중요문장 추출

검색결과 152건 처리시간 0.024초

시간적 관계정보를 활용한 멀티태스크 심층신경망 모델 학습 기법 (Multi-task Learning Approach for Deep Neural Networks Using Temporal Relations)

  • 임채균;오교중;최호진
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2021년도 제33회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.211-214
    • /
    • 2021
  • 다수의 태스크를 처리 가능하면서 일반화된 성능을 제공할 수 있는 모델을 구축하는 자연어 이해 분야의 연구에서는 멀티태스크 학습 기법에 대한 연구가 다양하게 시도되고 있다. 또한, 자연어 문장으로 작성된 문서들에는 대체적으로 시간에 관련된 정보가 포함되어 있을 뿐만 아니라, 문서의 전체 내용과 문맥을 이해하기 위해서 이러한 정보를 정확하게 인식하는 것이 중요하다. NLU 분야의 태스크를 더욱 정확하게 수행하려면 모델 내부적으로 시간정보를 반영할 필요가 있으며, 멀티태스크 학습 과정에서 추가적인 태스크로 시간적 관계정보를 추출하여 활용 가능하다. 본 논문에서는, 한국어 입력문장의 시간적 맥락정보를 활용할 수 있도록 NLU 태스크들의 학습 과정에서 시간관계 추출 태스크를 추가한 멀티태스크 학습 기법을 제안한다. 멀티태스크 학습의 특징을 활용하기 위해서 시간적 관계정보를 추출하는 태스크를 설계하고 기존의 NLU 태스크와 조합하여 학습하도록 모델을 구성한다. 실험에서는 학습 태스크들을 다양하게 조합하여 성능 차이를 분석하며, 기존의 NLU 태스크만 사용했을 경우에 비해 추가된 시간적 관계정보가 어떤 영향을 미치는지 확인한다. 실험결과를 통하여 전반적으로 멀티태스크 조합의 성능이 개별 태스크의 성능보다 높은 경향을 확인하며, 특히 개체명 인식에서 시간관계가 반영될 경우에 크게 성능이 향상되는 결과를 볼 수 있다.

  • PDF

한국어 특허문서상에서의 인과관계 관찰 및 추출 (Pattern-based Extraction of Causal Relations from Korean Patent Documents with Two Types of Criteria)

  • 이신목;김현수;황금하;최기선
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2006년도 춘계학술대회
    • /
    • pp.21-27
    • /
    • 2006
  • 인과관계는 인간의 인지활동에 있어서 매우 중요한 역할을 한다. 특히 과학과 공학 분야에서 얻은 인과지식은 해당 분야를 이해하는 데에 중요한 역할을 한다. 대표적인 예로, 이들 분야 문서들의 논리적 흐름을 파악하는 데 사용 가능하다. 본 연구에서는, 정보기술 분야의 특허 문서들로부터 얻은 인과 지식을 획득하기 위하여, 문장 내에 나타나는 인과쌍들을 추출하는 방법론을 제시한다. 이를 위하여, 인과관계를 수동으로 태깅하고 관찰하는 작업을 수행하였으며, 태깅을 위한 기준을 설정하였다. 인과쌍의 추출은 패턴을 이용하여 수행하였다.

  • PDF

확장된 6하원칙을 이용한 신문기사 자동요약 (An automatic extraction of newspaper articles using expanded 5WlH)

  • 윤재민;강인수;권오옥;배재학;이종혁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2002년도 봄 학술발표논문집 Vol.29 No.1 (B)
    • /
    • pp.466-468
    • /
    • 2002
  • 본 논문은 신문기사를 추출(Extract)하는데 있어서, 신문기사의 구조적인 특징을 분석한 후, 6하원칙(5W1H)과 전문(Lead)과의 관계를 유추하여 신문기사를 효과적으로 요약하기 위한 방법과 알고리즘을 제안하였다. 본 연구에서는 먼저 신문기사에서 가장 중요한 단락인 전문에서 6하원칙의 각 구성성분을 추출하고, 본문에서는 전문에 나타난 6하원칙의 각 성분이 어떻게 재사용되며 강조되고 있는가를 파악하기 위래 제안된 방법과 알고리즘을 이용하여 중요한 문장을 추출하였다. 실험문서는 조선일보 웹사이트에서 제공하는 신문기사 100건을 대상으로 하였으며 요약율이 20%와 30%일 경우 제안한 방법의 정확률은 각각 82.4%와 74.1%로 기존의 전문기반(Lead-based)방법보다 3.6%와 6.3% 향상되었다.

  • PDF

구문 의미 이해 기반의 VOC 요약 및 분류 (VOC Summarization and Classification based on Sentence Understanding)

  • 김문종;이재안;한규열;안영민
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권1호
    • /
    • pp.50-55
    • /
    • 2016
  • VOC(Voice of Customer)는 기업의 제품 또는 서비스에 대한 고객의 의견이나 요구를 파악할 수 있는 중요한 데이터이다. 그러나 VOC 데이터는 대화체의 특징으로 인해 내용의 분절이나 중복이 다수 존재할 뿐 아니라 다양한 내용의 대화가 포함되어 유형을 파악하는데 어려움이 있다. 본 논문에서는, 문서에서 중요한 의미를 갖는 키워드와 품사, 형태소 등을 언어 자원으로 선정하였고, 이를 바탕으로 문장의 구조 및 의미를 이해하기 위한 LSP(Lexico-Semantic-Pattern, 어휘 의미 패턴)를 정의하여 구문 의미 이해 기반의 주요 문장을 요약문으로 추출하였다. 요약문을 생성함에 있어 분절된 문장을 연결하고 중복된 의미를 갖는 문장을 줄이는 방법을 제안하였다. 또한 카테고리 별로 어휘 의미 패턴을 정의하고 어휘 의미 패턴에 매칭된 주요 문장이 속한 카테고리를 기반으로 문서를 분류하였다. 실험에서는 VOC 데이터를 대상으로 문서를 분류하고 요약문을 생성하여 기존의 방법들과 비교하였다.

문장군집의 응집도와 의미특징을 이용한 포괄적 문서요약 (Generic Document Summarization using Coherence of Sentence Cluster and Semantic Feature)

  • 박선;이연우;심천식;이성로
    • 한국정보통신학회논문지
    • /
    • 제16권12호
    • /
    • pp.2607-2613
    • /
    • 2012
  • 지식 기반의 포괄적 문서요약은 문장집합의 구성이 요약 결과에 영향을 받는다. 이러한 문제를 해결하기 위해서 본 논문은 의미특징에 의한 군집과 문장군집의 응집도를 이용하여 포괄적 문서요약을 하는 새로운 방법을 제안한다. 제안 방법은 비음수행렬분해에서 유도되는 의미특징을 이용하여 문장을 군집하고, 문서의 내부구조를 잘 표현하는 문장군집들로 문서의 주제 그룹을 분류할 수 있다. 또한 문장군집의 응집도와 재군집에 의한 군집의 정재를 이용하여 중요한 문장을 추출함으로써 요약의 질을 향상시킬 수 있다. 실험결과 제안방법은 다른 포괄적 문서요약 방법에 비하여 좋은 성능을 보인다.

명사-동사 공기패턴을 이용한 문서 자동 요약 (Automatic Text Summarization using Noun-Verb Cooccurrence Pattern)

  • 남기종;이창범;강대욱;박혁로
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2002년도 추계학술발표논문집 (상)
    • /
    • pp.611-614
    • /
    • 2002
  • 문서 자동 요약은 입력된 문서에 대해 컴퓨터가 자동으로 요약을 생성하는 과정을 의미한다. 즉, 컴퓨터가 문서의 기본적인 내용을 유지하면서 문서의 복잡도 즉 문서의 길이를 줄이는 작업이다. 효율적인 정보 접근을 제공함과 동시에 정보 과적재를 해결하기 위한 하나의 방법으로 문서 자동요약에 관한 연구가 활발히 진행되고 있다. 본 논문의 목적은 어휘 연관성 정보를 이용하여 한국어 문서를 자동으로 요약하는 효율적이며 효과적인 모형을 개발하는 것이다. 제안한 방법에서는 신문기사와 같은 특정 부류에 국한되는 단어간의 어휘연관성을 이용하여 명사-명사 공기패턴과 명사-동사 공기패턴을 구축하여 문서요약에 이용한다. 크게 불용어 처리 단계, 공기패턴 구축 단계, 문장 중요도 계산 단계, 요약 생성단계의 네 단계로 나누어 요약을 생성한다. 30% 중요문장 추출된 신문기사를 대상으로 평가한 결과 명사-명사 공기패턴과 빈도만을 이용한 방법보다 명사-동사 공기패턴을 이용한 방법이 좋은 결과를 가져 왔다.

  • PDF

패턴 부트스트랩핑을 이용한 특허 문헌에서의 시맨틱 트리플 추출 (Extracting Semantic Triples from Patent Documents Using Pattern Bootstrapping)

  • 정창후;전홍우;최윤수;송사광;최성필;조민희;정한민
    • 한국콘텐츠학회:학술대회논문집
    • /
    • 한국콘텐츠학회 2012년도 춘계 종합학술대회 논문집
    • /
    • pp.281-282
    • /
    • 2012
  • 문서에 존재하는 중요한 개체를 인식하고 그것들 간의 관계를 식별하는 시맨틱 트리플 추출은 문헌 분석의 기반이 되는 중요한 작업이다. 본 논문에서는 특허 문헌에서 이러한 시맨틱 트리플을 추출하는 방법에 대해서 설명한다. 특허 문헌의 효과적인 자동 분석을 위하여 문장 내의 다양한 구문적 변형을 인식하여 하나의 정규화된 의미 형태로 표현해주는 술어-논항 구조 기반의 패턴을 사용하였고, 패턴의 자동화된 확장을 위하여 부트스트랩핑 방법을 적용하였다. 이러한 방법은 소규모의 시드 데이터를 활용하여 특정의미 관계를 갖는 패턴을 자동으로 확장하고 최종적으로는 유의미한 트리플을 추출하는 방법으로 다량의 이진 관계 집합을 처리해야 할 때 아주 유용한 방법이다. 시스템 적용을 통하여 특허 문헌에 적합한 38개의 연관관계 집합을 생성하였고, 32,608개의 유의미한 트리플을 추출하였다.

  • PDF

육하원칙 활성화도를 이용한 신문기사 자동추출요약 (Automatic Extractive Summarization of Newspaper Articles using Activation Degree of 5W1H)

  • 윤재민;정유진;이종혁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권4호
    • /
    • pp.505-515
    • /
    • 2004
  • 육하원칙은 신문기사를 기술하는데 있어서 가장 기본적인 요소로서 기사 내용 파악에 핵심적인 역할을 수행한다. 본 논문은 이러한 육하원칙에 기반 하여 기술되는 신문기사의 특성에 주목하여, 육하원칙 활성화도를 이용한 신문기사 요약 방법론을 제안한다. 제안하는 방법론은 기존의 요약 기법 중 가장 우수한 방법으로 알려진 두문 기반 기법(lead-based method)과 제목 기반 기법(title-based method)의 문제점을 극복하기 위해, 제목과 두문의 정보를 결합시켜 충분한 어휘정보를 확보하도록 하였다. 특히 육하원칙 활성화도, 육하원칙 범주 개수, 문장 길이, 문장의 위치 둥과 같은 다양한 요소들을 문장 중요도 계산에 반영함으로써 보다 중요한 정보를 포함하면서도 가독성이 높은 문장들이 요약문으로 선택될 수 있도록 고려하였다. 제안된 방법론의 정확률은 74.7%로서 기존의 두문 기반 기법보다 우수한 성능을 보였으며, 신문기사를 자동 요약하는데 있어서 충분히 효과적으로 사용될 수 있는 방법론임을 실험을 통해 입증하였다.

Wikipedia에서 온톨로지 개념 인식을 위한 핵심어 추출 (Term Extraction for Ontology Concept Recognition in Wikipedia)

  • 고병규;김판구
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2010년도 춘계학술발표대회
    • /
    • pp.344-347
    • /
    • 2010
  • 최근 주목받고 있는 의미적 정보처리의 지식베이스인 온톨로지는 정형화된 표현을 통해 정확한 지식 처리와 추론관계를 명시해야 하기 때문에 온톨로지 확장에 대한 중요성 역시 강조되고 있다. 온톨로지 확장을 위한 기존의 방법들은 전문가를 통한 수작업 형태이거나 보편화된 사전이나 시소러스 집단의 분석을 통한 통계의 확률분포를 이용하는 반자동화된 방법들이 있다. 이에 본 논문에서는 Wikipedia에서 특정 도메인 문서들만을 수집한 후 중요문장 추출과정을 통해 해당 문서 내의 핵심어를 파악하여 이를 온톨로지의 개념 인식을 위한 정보로 활용할 수 있는 방안을 제시하고자 한다.

도합유사도를 이용한 한국어 추출문서 요약 (Korean Indicative Summarization Using Aggregate Similarity)

  • 김재훈;김준홍
    • 한국인지과학회:학술대회논문집
    • /
    • 한국인지과학회 2000년도 한글 및 한국어 정보처리
    • /
    • pp.238-244
    • /
    • 2000
  • 본 논문에서 문서는 문서관계도라고 하는 그래프로 표현된다. 노드는 문서의 구성요소인 문장을 표현하고, 링크는 노드들 간의 의미적인 관계를 나타낸다. 의미적 관계는 유사도에 의해서 결정되며, 문장의 중요도는 도합유사도로 나타낸다. 도합유사도는 한 노드와 인접한 노드들 사이의 유사도 합을 말한다. 본 논문에서는 도합유사도를 이용한 한국어 문서요약 기법을 제안한다. 실험에 사용된 평가용 요약문서는 정보처리 관련 분야에서 수집된 논문 100편과 KORDIC 에서 구축한 신문기사 105 건을 이용하였다. 문서요약 시스템에 의해서 생성된 요약문서의 크기가 본문 20%이고, 본문이 논문(서론과 결론)일 경우, 재현율과 정확률은 각각 46.6%와 76.9%를 보였으며, 또한 본문이 신문기사일 경우, 재현율과 정확률은 각각 30.5%과 42.3%를 보였다. 또한 제안된 방법은 상용시스템보다 좋은 성능을 보였다.

  • PDF