• Title/Summary/Keyword: 중염소

Search Result 577, Processing Time 0.03 seconds

Quality Changes of Cherry Tomato with Different Chlorine Dioxide ($ClO_2$) Gas Treatments during Storage (저장 중 이산화염소 가스의 처리 조건에 따른 방울토마토의 품질변화)

  • Choi, Woo Suk;Ahn, Byung Joon;Kim, Young Shik;Kang, Ho-Min;Lee, Jung-Soo;Lee, Youn Suk
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.19 no.1
    • /
    • pp.17-27
    • /
    • 2013
  • The effects of chlorine dioxide gas ($ClO_2$) treatments between high-concentration-short-time and low-concentration-long-time on maintaining the quality of cherry tomatoes (Lycopersicon esculentum Mill. cv 'unicorn') were investigated. Tomatoes were treated with 5 ppm for 10 min and 10 ppm for 3 min as high-concentration-short-time $ClO_2$ gas treatment conditions and 1 ppm for once a day interval in terms of low-concentration-long-time $ClO_2$ gas treatment condition, respectively. After $ClO_2$ gas treatments, tomatoes were storage at 5 and $23^{\circ}C$ for 7 days. Weight loss, changes in tomato color, firmness, soluble solids content, pH, growth of total microorganism, and decay rate were evaluated. On day 7, tomatoes treated with chlorine dioxide gas showed low values of respiratory rate, total microbial growth, and decay rate compared to those of tomato without chlorine dioxide gas treatment. Additionally, tomatoes treated the chlorine dioxide were kept the values of firmness and soluble solids content during storage. However, chlorine dioxide gas treatment on tomatoes had no direct effect on weight loss, pH, and color. Results showed that both $ClO_2$ concentration and treatment time played the important roles for keeping the quality of tomatoes during storage. Tomatoes with chlorine dioxide gas treatment of low-concentration-long-time had more effective values of firmness, the total microbial growth, and decay rate than those with two chlorine dioxide gas treatments of high-concentration-short-time. Results suggest the potential use of chlorine dioxide gas treatment of low-concentration-long-time as an highly effective method for keeping the freshness of cherry tomato.

  • PDF

Microbiological changes and quality characteristics of dried persimmon by chlorine dioxide gas fumigation treatment (이산화염소 가스 훈증 처리에 따른 곶감의 미생물학적 변화 및 품질특성)

  • Moon, Hey-Kyung;Lee, Su-Won;Lee, Wha Jin;Hossein, Abul;Lee, Seul;Kim, Jong-Kuk
    • Food Science and Preservation
    • /
    • v.24 no.5
    • /
    • pp.608-614
    • /
    • 2017
  • This study was conducted to investigate the effect of chlorine dioxide fumigation as a substitute for sulfur fumigation which has been used as a method to prevent the quality change of persimmon during storage and distribution process. Dried persimmons were treated with chlorine dioxide gas concentration (0, 15 30, and 45 ppm) and time (0, 15, 30, and 45 min) and microbiological changes, texture properties and color of the treated samples were investigated during storage at room temperature. Total aerobic bacteria, yeast and mold numbers after chlorine dioxide gas fumigation were decreased when compared with the control group. The inhibitory effects of total aerobic bacteria, yeast, and mold were observed during storage. The texture properties and color value of dried persimmons were not affected by chlorine dioxide gas fumigation concentration and time. There was no difference in quality between chlorine dioxide gas fumigation treatment group and control group. These results suggested that chlorine dioxide gas fumigation treatment can be utilized as a processing technique to secure microbiological storage stability of dried persimmons.

Usefulness of Chlorine Dioxide to Airborne Bacteria at a Hospital Using Biological Information (생물학적 정보를 활용한 병원에서 존재하는 공기중 부유 세균에 대한 이산화염소의 유용성)

  • Jung, Suk-Yul
    • Journal of Internet of Things and Convergence
    • /
    • v.6 no.2
    • /
    • pp.19-24
    • /
    • 2020
  • In the present study, using biological information of bacteria and biochemical information of chlorine dioxide gas, Gram-positive bacteria, e.g., Alloiococcus otitis, Erysipelothrix rhusiopathiae, Staphylococcus caprae, Staphylococcus lentus, and gram-negative bacteria, e.g., Acinetobacter baumannii complex, Aeromonas salmonicida, Brucella melitensis, Oligella ureolytica were used whether a plastic kit to release ClO2 gas could inhibit their growth. Overall, chlorine dioxide gas showed about 99% inhibition of bacterial growth, with less than 10 CFU. However, it was found that Gram positive Alloiococcus otitis and Gram negative Aeromonas salmonicida had more than about 50 CFU. When comparing the results of experiments with several bacteria, it suggested that the concentration of chlorine dioxide gas would be at least 10 ppm to 400 ppm for the bacterial inhibition. The results of this study could be used as basic data to evaluate the clinical usefulness of chlorine dioxide gas. If this study helps with prior knowledge to help clinicians to recognize and prevent the presence of micro-organisms that cause infections in hospitals, it would be helpful for activities such as patient care as a convergence field. In the future, it is considered that the research results will be the basis for rapidly inhibiting the microbes infected with patients by utilizing data of the information of the microbes that are inhibited for chlorine dioxide gas.

Prediction of Damages and Evacuation Strategies for Gas Leaks from Chlorine Transport Vehicles (염소 운송차량 가스누출시 피해예측 및 대피방안)

  • Yang, Yong-Ho;Kong, Ha-Sung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.2
    • /
    • pp.407-417
    • /
    • 2024
  • The objective of this study is to predict and reduce potential damage caused by chlorine gas leaks, a hazardous material, when vehicles transporting it overturn due to accidents or other incidents. The goal is to forecast the anticipated damages caused by chlorine toxicity levels (ppm) and to design effective response strategies for mitigating them. To predict potential damages, we conducted quantitative assessments using the ALOHA program to calculate the toxic effects (ppm) and damage distances resulting from chlorine leaks, taking into account potential negligence of drivers during transportation. The extent of damage from toxic gas leaks is influenced by various factors, including the amount of the leaked hazardous material and the meteorological conditions at the time of the leak. Therefore, a comprehensive analysis of damage distances was conducted by examining various scenarios that involved variations in the amount of leakage and weather conditions. Under intermediate conditions (leakage quantity: 5 tons, wind speed: 3 m/s, atmospheric stability: D), the estimated distance for exceeding the AEGL-2 level of 2 ppm was calculated to be 9 km. This concentration poses a high risk of respiratory disturbance and potential human casualties, comparable to the toxicity of hydrogen chloride. In particular, leaks in urban areas can lead to significant loss of life. In the event of a leakage incident, we proposed a plan to minimize damage by implementing appropriate response strategies based on the location and amount of the leak when an accident occurs.

Study on Destruction of Chlorinated Organic Compounds in a Two Stage Molten Carbonate Oxidation System (2단 용융탄산염산화시스템에서 염소유기화합물 분해에 관한 연구)

  • Eun, Hee-Chul;Yang, Hee-Chul;Cho, Yung-Zun;Lee, Han-Soo
    • Korean Chemical Engineering Research
    • /
    • v.46 no.6
    • /
    • pp.1148-1152
    • /
    • 2008
  • Molten carbonate oxidation (MCO) is one of the promising alternative technologies for the treatment of the chlorinated organic compounds because it is capable of trapping chlorine during a destruction of them. In this study, destructions of chlorinated organic compounds ($C_6H_5Cl$, $C_2HCl_3$ and $CCl_4$) and an insulated oil containing PCBs were performed by using the two stage molten carbonate oxidation system. MCO reactor temperature largely affected the destruction of the chlorinated organic compounds. Destruction of the chlorinated organics very efficient in the primary MCO reactor however a significant amount of CO was emitted from the MCO system. This CO emission was gradually decreased by an increase in the primary reactor temperature and oxidizing air feed rate. The HCl emission from the MCO system was below 7 ppm regardless of tested conditions. The chlorine collection efficiencies were in the range of 99.95-99.99%. The destruction of PCBs in the insulated oil was efficient at a temperature above $900^{\circ}C$ and overall destruction efficiency of them was determined as over 99.9999%.

Preparation of Silicon Tetrachloride by Chlorination of Silicon (실리콘의 염소화반응에 의한 사염화규소 제조)

  • Park, Kyun Young;Lee, Mi Sun;Kim, Min Cheol;Lee, Chan Hee;Park, Hoey Kyung;Kang, Tae Won;Jeong, Hae Seong;Han, Kyoung Ah;Huh, Weon Hoe;You, Ji Cheol
    • Korean Chemical Engineering Research
    • /
    • v.51 no.3
    • /
    • pp.407-410
    • /
    • 2013
  • The chlorination of a metallurgical-grade silicon was carried out in a fluidized bed reactor, 25 mm in diameter. The flow rate of the chlorine admitted into the reactor was 0.2 L/min and that of the carrier nitrogen was 0.8~1.0 L/min. The reactor temperature was maintained at $450^{\circ}C$ and the temperature of the coolant at the $SiCl_4$ condenser was at $-5^{\circ}C$. The $SiCl_4$ yield increased with increasing the mole fraction of chlorine in the feed gas, exhibiting 28% at the mole fraction of 0.2. Further increase of the chlorine mole fraction was not attempted in a worry that the reactor might be failed due to the high exothermicity of the reaction. The production of $SiCl_4$ from silicon by fluidized bed chlorination was demonstrated on a laboratory scale, which is a stepping stone for future studies under more severe conditions toward industrial application.

Examination for Controlling Chloride Penetration of Concrete through Micro-Cracks with Surface Treatment System (표면도장공법을 적용한 미세균열 콘크리트의 염소이온 침투 제어 특성)

  • Yoon, In-Seok;Chae, Gyu-Bong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.5A
    • /
    • pp.729-735
    • /
    • 2008
  • For well-constructed concrete, its service life is a long period and it has an enough durability performance. For cracked concrete, however, it is clear that cracks should be a preferential channel for the penetration of aggressive substance such as chloride ions accoding to author's previous researches. Even though crack width can be reduced due to the high reinforcement ratio, the question is to which extend these cracks may jeopardize the durability of cracked concrete. If the size of crack is small, surface treatment system can be considered as one of the best options to extend the service life of concrete structures exposed to marine environment simply in terms of cost effectiveness versus durability performance. Thus, it should be decided to undertake an experimental study to deal with the effect of different types of surface treatment system, which are expected to seal the concrete and the cracks to chloride-induced corrosion in particular. In this study, it is examined the effect of surfaced treated systems such as penetrant, coating, and their combination on chloride penetration through microcracks. Experimental results showed that penetrant can't cure cracks. However, coating and combined treatment can prohibit chloride penetration through cracks upto 0.06 mm, 0.08 mm, respectively.

A Review Study on Major Factors Influencing Chlorine Disappearances in Water Storage Tanks (저수조 내 잔류염소 감소에 미치는 주요 영향 인자에 관한 문헌연구)

  • Noh, Yoorae;Kim, Sang-Hyo;Choi, Sung-Uk;Park, Joonhong
    • Journal of Korean Society of Disaster and Security
    • /
    • v.9 no.2
    • /
    • pp.63-75
    • /
    • 2016
  • For safe water supply, residual chlorine has to be maintained in tap-water above a certain level from drinking water treatment plants to the final tap-water end-point. However, according to the current literature, approximately 30-60% of residual chlorine is being lost during the whole water supply pathways. The losses of residual chlorine may have been attributed to the current tendency for water supply managers to reduce chlorine dosage in drinking water treatment plants, aqueous phase decomposition of residual chlorine in supply pipes, accelerated chlorine decomposition at a high temperature during summer, leakage or losses of residual chlorine from old water supply pipes, and disappearances of residual chlorine in water storage tanks. Because of these, it is difficult to rule out the possibility that residual chlorine concentrations become lower than a regulatory level. In addition, it is concerned that the regulatory satisfaction of residual chlorine in water storage tanks can not always be guaranteed by using the current design method in which only storage capacity and/or hydraulic retention time are simply used as design factors, without considering other physico-chemical processes involved in chlorine disappearances in water storage tank. To circumvent the limitations of the current design method, mathematical models for aqueous chlorine decomposition, sorption of chlorine into wall surface, and mass-transfer into air-phase via evaporation were selected from literature, and residual chlorine reduction behavior in water storage tanks was numerically simulated. The model simulation revealed that the major factors influencing residual chlorine disappearances in water storage tanks are the water quality (organic pollutant concentration) of tap-water entering into a storage tank, the hydraulic dispersion developed by inflow of tap-water into a water storage tank, and sorption capacity onto the wall of a water storage tank. The findings from his work provide useful information in developing novel design and technology for minimizing residual chlorine disappearances in water storage tanks.

Effects of Chlorine Water and Plasma Gas Treatments on the Quality and Microbial Control of Latuca indica L. Baby Leaf Vegetable during MA Storage (염소수와 플라즈마 가스 처리가 왕고들빼기 어린잎채소의 MA저장 중 품질과 미생물 제어에 미치는 영향)

  • Kim, Ju Young;Han, Su Jeong;Whang, Lixia;Lee, Joo Hwan;Choi, In-Lee;Kang, Ho-Min
    • Journal of Bio-Environment Control
    • /
    • v.28 no.3
    • /
    • pp.197-203
    • /
    • 2019
  • This study was carried out to investigate the effect of chlorine water and plasma gas treatment on the quality and microbial control of Latuca indica L. baby Leaf during storage. Latuca indica L. baby leaves were harvested from a plant height of 10cm. They were sterilized with $100{\mu}L{\cdot}L^{-1}$ chlorine water and plasma-gas (1, 3, and 6hours), and packaged with $1,300cc{\cdot}m^{-2}{\cdot}day^{-1}{\cdot}atm^{-1}$ films and then stored at $8{\pm}1^{\circ}C$ and RH $85{\pm}5%$ for 25days. During storage, the fresh weight loss of all treatments were less than 1.0%, and the carbon dioxide and oxygen concentrations in packages were 6-8% and 16-17%, respectively for all treatments in the final storage day. The concentration of ethylene in the packages fluctuated between $1-3{\mu}L{\cdot}L^{-1}$ during the storage and the highest concentration of ethylene was observed at 6 hours plasma treatment in the final storage day. The off-odor of all treatments were almost odorless, the treatments of chlorine water and 1 hour plasma maintained the marketable visual quality until the end of storage. Chlorophyll content and Hue angle value measured at the final storage day were similar to those measured before storage in chlorine water and 1 hour of plasma treatments. E. coli was not detected immediately after sterilization in all sterilization treatments. After 6 hours of plasma treatment, the total bacteria fungus counts were lower than the domestic microbial standard for agricultural product in all sterilization treatments. The total aerobic counts in the end storage day increased compared to before storage, whereas E. coli was not detected in all sterilization treatments. The sterilization effect against bacteria and fungi was the best in chlorine water treatment. Plasma treatment showed sterilization effects, but within a prolonged period of time. In addition, the sterilization effect decreased gradually. These results suggest that chlorine water and plasma treatment were effective in maintaining Latuca indica L. baby Leaf commerciality and controlling microorganisms during postharvest storage.

닭고기의 저장성 증진기술(2)

  • 대한양계협회
    • KOREAN POULTRY JOURNAL
    • /
    • v.33 no.1 s.375
    • /
    • pp.120-123
    • /
    • 2001
  • 닭고기는 도계공정과 취급과정에서 미생물이 오염되고 지방산화가 촉진되어 쉽게 변질되기 때문에 타 식육에 비해 저장성이 문제되는 육류식품이다. 저장성에 가장 영향을 미치는 것은 도계 공정중에 일어나는 상호오염 문제이다. 왜냐하면 닭 표피에 오염된 미생물은 나중에 수세나 염소수(chlorine)로 처리하여도 쉽게 제거되지 않기 때문이다. 따라서 위생적인 도계생산이 저장을 위한 필수 선결요소이다. 그리고 도계후 처리과정에서 작업자의 위생적인 인식이 요구되며, 가능한 단시간내에 포장을 하여 냉장 및 냉동 유통을 실시하여야 한다. 도계 및 수세공정중에 기존 염소수외에 초음파나 오존을 사용하거나 이산화염소나 인산염, pH 조정제 등을 첨가하면 미생물 억제효과가 크다고 보고되고 있다. 포장한 닭고기에 조사를 실시하면 2배 이상 저장기간을 연장시킬 수 있어 우리나라에서도 법적 허용 가능성을 검토 할 필요가 있다. 이와 같이 닭고기에 단일방법보다 hurdle technology를 이용한 복합적인 방법을 활용해야 저장기간을 연장할 수 있다.

  • PDF