• Title/Summary/Keyword: 중앙해령

Search Result 22, Processing Time 0.024 seconds

An Understanding the Opening Style of the West Philippine Basin Through Multibeam High-Resolution Bathymetry (고해상도 다중빔음향측심 지형자료 분석을 통한 서필리핀분지의 진화 연구)

  • Hanjin Choe;Hyeonuk Shin
    • Journal of the Korean earth science society
    • /
    • v.44 no.6
    • /
    • pp.643-654
    • /
    • 2023
  • The West Philippine Basin, an oceanic basin half the size of the Philippine Sea Plate, lies in the western part of the plate and south of the Korean Peninsula on the Eurasian Plate. It subducts beneath the Eurasian Plate and the Philippine Islands bordering the Ryukyu Trench and the Philippine Trench with 25-50% of this basin already consumed. However, the history of the opening of the basin's southern region has been a topic of debate. The non-transform discontinuity formed during the seafloor spreading is similar to the transform fault boundaries normally perpendicular to mid-ocean ridge axes; however, it was created irregularly due to ridge propagations caused by variations of mantle convection attributable to magma supply changes. By analyzing high-resolution multi-beam echo-sounding data, we confirmed that the non-transform discontinuity due to the propagating rift evolved in the entire basin and that the abyssal hill strike direction changed from E-W to NNW-SSE from the fossil spreading center. In the early stage of basin extension, the Amami-Sankaku Basin was rotated 90 degrees clockwise from its current orientation, and it bordered the Palau Basin along the Mindanao Fracture Zone. The Amami-Sankaku Basin separated from the Palau Basin while the spreading of the West Philippine Basin began with a counter-clockwise rotation. This indicates that the non-transform discontinuities formed by a sudden change in magma supply due to the drift of the Philippine Sea Plate and simultaneously with the rapid changes in the spreading direction from ENE-WSW to N-S. The Palau Basin was considered to be the sub-south of the West Philippine Basin, but recent studies have shown that it extends into an independent system. Evidence from sediment layers and crustal thickness hints at the possibility of its existence before the West Philippine Basin opened, although its evolution continues to be debated. We performed a combined analysis using high-resolution multi-beam bathymetry and satellite gravity data to uncover new insights into the evolution of the West Philippine Basin. This information illuminates the complex plate interactions and provides a crucial contribution toward understanding the opening history of the basin and the Philippine Sea Plate.

The Study of Hydrothermal Vent and Ocean Crustal Structure of Northeastern Lau Basin Using Deep-tow and Surface-tow Magnetic Data (심해 및 표층 지자기 자료를 이용한 라우분지 북동부의 열수 분출구 및 해저 지각 구조 연구)

  • Kwak, Joon-Young;Won, Joong-Sun;Park, Chan-Hong;Kim, Chang-Hwan;Ko, Young-Tak
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Fonualei Rift and Spreading Center(FRSC) and Mangatolu Triple function(MTJ) caldera are located in northeastern part of Lau basin which is the active back-arc basin. Deep-tow and surface-tow magnetic surveys are carried out in FRSC. In deep-tow magnetic survey, to compensate for influence of uneven distance between bathymetry and sensor height, magnetic anomaly is continued upward to a level plane by using the Guspi method. We calculate crustal magnetization using Parker and Huestis's inversion algorithm, and try to find the hydrothermal vent and understand the structure of ocean floor crust. The result of deep-tow magnetic survey at FRSC showed that Central Anomaly Magnetization High(CAMH) recorded the max value of 4.5 A/m which is associated with active ridge. The direction of SSW-NNE corresponds with the direction of the principal spreading ridge in Lau basin. The low crustal magnetizaton$(174^{\circ}35.1'W,\;16^{\circ}38.4'S)$ of -4.0 A/m is supposed to correlate with submarine hydrothermal vent. Surface-tow magnetic data were collected in MTJ caldera$(174^{\circ}00'W,\;15^{\circ}20'S)$. The prevailing SSW-NNE direction of collapsing walls and the presence of CAMH at the center of caldera strongly indicate the existence of active spreading ridge in ancient times.

동해 남부해역의 심층류 관측

  • 이진기;안희수;신홍렬;윤종환
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.7 no.3
    • /
    • pp.203-206
    • /
    • 2002
  • 동해 남부해역의 5개 정점에서 유속계 계류에 의한 장기 해류 관측이 한일 공동으로 행해졌다. 1000 m이상의 유속장을 조사하기 위해 각 정점에는 유속계가 두 개씩 부착되어 1∼3년간(1998∼2001년) 계류되었다 유속계 관측 자료는 심층류가 대체로 해저지형을 따라 흐르고 있음을 보여주고 있다. 즉, 울릉분지 남동사면과 야마토해령 서북부해역에서는 주로 북향류가 우세하고, 야마토분지 중앙과 남서쪽 가장자리 해역에서는 남향류가 지배적이며, 야마토분지 남동해역에서는 동향류가 강한 순환 형태를 이루고 있는 것이다 계절별로는 12∼2월의 겨울철에 연중 최대 유속이 보여지며, 일주조의 조석성분과 관성운동의 흔적 외에 3∼5일 주기의 불규칙한 변동은 연중 나타나고 있다.

Geochemical Comparison Study on the Amphibolite in the Central Gyeonggi massif and Southeastern Okcheon metamorphic belt (중부 경기육괴와 동남부 옥천변성대의 각섬암에 대한 지화학적 비교 연구)

  • Na Ki Chang;Cheong Won Seok
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.4
    • /
    • pp.201-213
    • /
    • 2004
  • The Precambrian amphibolites in the central Gyeonggi massif, Yangsuri, Gyeonggido and southeastern Okcheon metamophic belt, Mungyeonggun, Gyeongsangbukdo, Korea, were studied on the geochemical characteristics of major and trace elements, and discussed petrogenetically and geotectonically. The characteristics of major elements of the amphibolites in these study areas are igeous origin such as tholeiitic-, subalkaline and alkaline basalt. Geotectonic distinction diagrams of trace elements such as Ti-Zr-Y and Zr-Nb-Y show basaltic igneous activity of island arc and mid ocean ridge environment at central Gyunggi massif, and within plate environment at southeastern Okcheon metamorphic belt. This result shows that genetic environments of study areas are different. Especially, origin of amphibolites in central Gyeonggi massif is similar with that of western Gyeonggi massif but different with the amphibolites of Chuncheon area. Genetic environment estimated of fractional crystallization of plagioclase has no particular effect on the origin of magma because value of LREE is higher than that of HREE and Eu anomaly definitely don't be exposed.

Petrochemistry of Garnet-bearing Metabasite in Marble at Shinri area in Hongseong and its Tectonic Implication (홍성 신리 지역 대리암 내 함석류석 변성염기성암의 암석지화학 연구 및 그 지구조적 의미)

  • Kim, Sung-Won;Koh, Hee-Jae
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.209-225
    • /
    • 2010
  • The Shinri area near the Yedang Lake, the eastern part of the Hongseong area in SW Gyeonggi Massif, consists of the Neoproterozoic Duckjeongri granodiorite-tonalite, mylonitized amphibole-bearing orthogneiss and impure marble with lens-shaped garnet-bearing metabasites. In this paper, we report mineralogical and geochemical data of Neoproterozoic lens-shaped garnet-bearing metabasites within marble of the Shinri area. The $SiO_2$ contents of garnet-bearing metabasites in marble vary between ~46.98 and 51.17 wt%, and the $Na_2O$ + $K_2O$ contents fall between ~1.95 and 2.85 wt%, similar to the tholeiitic sub-alkaline basaltic rocks. In the Zr/Y vs. Zr diagram, garnet-bearing metabasites also plot in the subalkaline basaltic rocks. The chondrite-normalized REE patterns for Shinri garnet-bearing metabasites show relatively flat patterns to that of chondrite. They show slight LREE-enriched and depleted patterns. The major and trace element data from lens-shaped garnet-bearing metabasites in marble of the Shinri area suggest that these rocks were formed in within plate. In contrast, previous major and trace element data of high pressure type garnet-bearing metabasites from the mafic-ultramafic complex in the Baekdong and Bibong areas suggest that these rocks were formed in a nascent arc to backarc spreading center within subduction zone setting. Based on mineral assemblage and mineral chemistry, P-T estimates for Shinri garnet-bearing metabasites are 9.6-12.7 kb, $695-840^{\circ}C$ for inclusions in the core, and 9.6-13.6 kb, $630-755^{\circ}C$ for those in the rim. These P-T estimates are distinct from those of the Baekdong and Bibong garnet-bearing metabasites with isothermal decompressional retrograde P-T path. In addition to Triassic tectonic activity previously reported in the Shinri area of Hongseong, the details of metamorphic history such as protolith age and Neo-Proterozoic metamorphic episode need to be solved.

Seismic Structures of the Eastern Bransfield Basin, Antarctic Peninsula (남극반도 동부 브랜스필드분지의 탄성파구조)

  • Jin, YoungKeun;Nam, SangHeon;Kim, YeaDong;Lee, JooHan
    • Journal of the Korean Geophysical Society
    • /
    • v.7 no.2
    • /
    • pp.99-112
    • /
    • 2004
  • The Basin, a marginal basin located between the Antarctic Peninsula and the South Shetland Islands, is consist of three small basins, the Central, Eastern, Western Basins. Seismic data obtained on December 1995 show well-defined spreading ridges, basement highs, faults, morphology of the basin, distribution of sediments, crustal and sedimentary deformation, diapirs, and contourites. The main spreading axis of the Central Bransfield Basin connecting Deception and Bridgeman Islands continues up to the central part of the Eastern Basin, whereas deep basin covered by thick sediments without any spreading structures develops in the northeastern part. This indicates that back-arc spreading along the axis of the Bransfield Basin has been taken place in the southwestern part of the Eastern Basin, not in the northeastern part. Many NW-SE trending faults perpendicular to the axis of the basin would be related with strike-slip movement of the Shackleton Fracture. Zone. Extensinal strutures like deep basin without any spreading structures in the northeastern part, normal faults and diapirs on both continental slopes of the Eastern Basin would be formed by extension as a consequence of the sinistral movement between Antarctic and the Scotia plates.

  • PDF

Lithospheric Mantle beneath the Korean Peninsula: Implications from Peridotite Xenoliths in Alkali Basalts (우리나라 상부암석권 맨틀: 페리도타이트 포획암으로부터의 고찰)

  • Choi, Sung-Hi
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.235-247
    • /
    • 2012
  • Peridotite xenoliths hosted by alkali basalts from South Korea occur in Baengnyeong Island, Jeju Island, Boeun, Asan, Pyeongtaek and Ganseong areas. K-Ar whole-rock ages of the basaltic rocks range from 0.1 to 18.9 Ma. The peridotites are dominantly lherzolites and magnesian harzburgites, and the constituent minerals are Fo-rich olivine ($Fo_{88.4-92.0}$), En-rich orthopyroxene, Di-rich clinopyroxene, and Cr-rich spinel (Cr# = 7.8-53.6). Hydrous minerals, such as pargasite and phlogopite, or garnet have not been reported yet. The Korean peridotites are residues after variable degree of partial melting (up to 26%) and melt extraction from fertile MORB mantle. However, some samples (usually refractory harzburgites) exhibit metasomatic enrichment of the highly incompatible elements, such as LREE. Equilibration temperatures estimated using two-pyroxene geothermometry range from ca. 850 to $1050^{\circ}C$. Sr and Nd isotopic compositions in clinopyroxene separates from the Korean peridotites show trends between depleted MORB-like mantle (DMM) and bulk silicate earth (BSE), which can be explained by secondary metasomatic overprinting of a precursor time-integrated depleted mantle. The Korean peridotite clinopyroxenes define mixing trends between DMM and EM2 end members on Sr-Pb and Nd-Pb isotopic correlation diagrams, without any corresponding changes in the basement. This is contrary to what we observe in late Cenozoic intraplate volcanism in East Asia which shows two distinct mantle sources such as a DMM-EM1 array for NE China including Baengnyeong Island and a DMM-EM2 array for Southeast Asia including Jeju Island. This observation suggests the existence of large-scale two distinct mantle domains in the shallow asthenosphere beneath East Asia. The Re-Os model ages on Korean peridotites indicate that they have been isolated from convecting mantle between ca. 1.8 and 1.9 Ga.

Diagenesis of the Carbonate Rocks of the Seamounts In the Federated States of Micronesia, Central Pacific (중앙태평양 마이크로네시아 군도 해저산 일원에서 발견되는 탄산염암의 속성작용)

  • Woo, Kyung-Sik;Choi, Yoon-Ji;Lee, Kyeong-Yong;Kang, Jung-Keuk;Park, Byong-Kwong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.3 no.4
    • /
    • pp.214-227
    • /
    • 1998
  • This study was carried out to investigate the composition and diagenesis of the carbonate rocks from the seamounts in the Federated States of Micronesia, Central Pacific. Most of the samples were dredged from the water depth of about 1000-3000 m mainly in Chuuk Island, Hunter Bank, Caroline Ridge and Yap Trench. The carbonate rocks are either pelagic sediment mainly of planktonic foraminifera or shallow-marine sediment of corals, calcareous algae, mollusks and echinoderms. The rocks are altered texturally and chemically, except for those from the Hunter Bank and Yap A. The presence of shallow-marine cements suggests that the carbonate sediment has been subsided or reworked to the present water depth after deposition in shallow-marine environments. The texture of the carbonate sediment is reminiscent of meteoric diagenesis; however, the stable carbon isotopic composition of the altered rock samples shows affinity with that of sea water and the oxygen isotopic values are slightly enriched or same as compared to those of unaltered samples. These stable isotopic data suggest that the carbonate sediment of the study area has been diagenetically altered in the present deep-marine environment.

  • PDF

Sr, Nd and Pb Isotopic Compositions of the Pyeongtaek-Asan Alkali Basalts: Implication to the Contrasting Compositional Boundary for the Mantle beneath Korean Peninsula (평택-아산 알칼리 현무암의 Sr, Nd 및 Pb 동위원소 조성: 한반도 아래 맨틀의 대조적인 조성 경계에 대한 의미)

  • Park, Kye-Hun;Cheong, Chang-Sik;Jeong, Youn-Joong
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.3
    • /
    • pp.144-153
    • /
    • 2008
  • Sr, Nd, Pb isotopic compositions of the Cenozoic basaltic rocks distributed in Pyeongtaek-Asan area display significantly enriched values compared with mid-ocean ridge basalts just like other Cenozoic basalts of Korea. The isotopic compositions of most of the Cenozoic basaltic rocks of Korea including those from Pyeongtaek-Asan area can be explained as mixing between enriched mantle component with relatively low $^{206}Pb/^{204}Pb$ ratios and depleted mantle component. In contrast, Jejudo basalts can be explained as mixing between enriched mantle component with realtively higher $^{206}Pb/^{204}Pb$ ratios and depleted mantle componsnt. Combined with that very similar division of enriched mantle components is applied to the Cenozoic basalts of northeast China and southeast China, it is suggested that subcontinental lithospheric mantle of central and southern parts of Korea represents eastern extension of North China Block and South China Block respectively. The indentation model for the late Paleozoic to early Mesozoic continental collision of China contradicts to such an interpretation, because it cannot explain occurrence of subcontinental lithospheric mantle component of South China Block-affinity under the Jejudo area. Instead, it is more probable that suture zone of the two continental blocks crosses between central and southern Korea and its location is further south from the Pyeongtaek-Asan area. Such distinct location compared with Imjingal belt, supposedly collisional boundary suggested before, suggests that mantle boundary may not be coincide with crustal boundary for the continental collision.

Morphological Characteristics of Ocean Core Complexes (OCC) in Central Indian Ridge Using High-Resolution Bathymetry and Backscatter Intensity Data from a Deep-Towed Vehicle (심해예인 고해상도 수심 자료와 후방산란 강도 자료를 이용한 인도양 중앙해령 내 Ocean Core Complex 구조의 지형적 특성 분석)

  • Hwang, Gyuha;Kim, Seung-Sep;Son, Seung Kyu;Kim, Jonguk;Ko, Youngtak
    • Ocean and Polar Research
    • /
    • v.42 no.1
    • /
    • pp.49-61
    • /
    • 2020
  • We analyzed the morphological characteristics of OCC (Ocean Core Complexes) in the middle part of the Central Indian Ridge (MCIR) using high-resolution geophysical data recorded on the Deep-Tow SideScan Sonar IMI-30 system. In terms of slope-gradient variations calculated from the high-resolution bathymetry data, the normal faults formed by seafloor spreading were associated generally with slopes > 30° and resulted in high backscatter intensities, which reflect more topographic effects than acoustic medium variation. However, the areas associated with gentle slopes < 10° tend to show the backscatter intensities reflecting the acoustic characteristic of the medium. We show that the detachment faults exposing the OCCs were initiated with high-angle normal faults (58°) exhibiting outward and inward dips of a breakaway zone. In order to examine the spatial distribution of OCC structures, we characterized the transition from magmatic-dominant seafloor with abyssal hills to tectonic-dominant seafloor with OCC using the down-slope direction variation. The slope direction of the seafloor generally tends to be perpendicular to the ridge azimuth in the magmatic-dominant zone, whereas it becomes parallel to the given ridge azimuth near the OCC structures. Therefore, this spatial change of seafloor slope directions indicates that the formation of OCC structures is causally associated with the tectonic-dominant spreading rather than magmatic extension. These results also suggest that the topographical characteristics of seafloor spreading and OCC structures can be distinguished using high-resolution geophysical data. Thus, we propose that the high-resolution bathymetry and backscatter intensity data can help select potential areas of exploitation of hydrothermal deposits in MCIR effectively.