• Title/Summary/Keyword: 중력 역산

Search Result 36, Processing Time 0.02 seconds

Development of Network based Gravity and Magnetic data Processing System (네트워크에 기반한 중력.자력 자료의 처리기술 개발 연구)

  • Kwon, Byung-Doo;Lee, Heui-Soon;Oh, Seok-Hoon;Chung, Ho-Joon;Rim, Hyoung-Rae
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.4
    • /
    • pp.235-244
    • /
    • 2000
  • We studied basic ideas of a network based Gravity/Magnetic data processing server/client system which provides functions of data processing, forward modeling, inversion and data process on Data Base. This Java technology was used to provide facilities, socket communication and JDBC(Java Database Connectivity) technology to produce an effective and practical client application. The server computers are linked by network to process the MPI parallelized computing. This can provide useful devices of the geophysical process and modeling that usually require massive computing performance and time. Since this system can be accessed by lots of users, it can provides the consistent and confident results through the verified processing programs. This system also makes it possible to get results and outputs through internet when their local machines are connected to the network. It can help many users who want to omit the jobs of system administration and to process data during their field works.

  • PDF

Risk Assessment of Cut Slope by Gravity Field Interpretation and Modelling (비탈면 위험도 평가를 위한 중력장 해석 및 모델링)

  • Choi, Sungchan;Kim, Sung-Wook;Choi, Eun-Kyoung;Lee, Yeong-Jae;Jang, Hyun-Ick
    • The Journal of Engineering Geology
    • /
    • v.31 no.4
    • /
    • pp.533-540
    • /
    • 2021
  • Gravity field analysis and density modeling were performed to evaluate the internal state of the rock mass, which is the cause of cut slope collapse. The shape of the weathered zone and the depth of basement could be confirmed from the complete Bouguer anomaly and density model. The basement depth at the center of the cut slope calculated using the Euler deconvolution inverse method is 30 m, which is about 10 m deeper than the surrounding area. In addition, the depth of basement and the thickness of the weathered zone are similar to the boundary between low resistivity and high resistivity in dipole-dipole survey. From the study results, gravity field analysis and density modeling recognizes the internal state of the rock slope and can be used for slope safety analysis, and is particularly suitable as a method to determine the shape of weathered zones in interpreting the safety of cut slopes

The Study on Integration of Gravities Anomaly in South Korea and Its Vicinities by Using Spherical Cap Harmonic Analysis (구면캡 조화분석을 이용한 남한 및 그 주변지역의 중력이상 통합에 관한 연구)

  • Hwang, Jong-Sun;Kim, Hyung-Rae;Kim, Chang-Hwan;You, Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.41 no.2
    • /
    • pp.211-217
    • /
    • 2008
  • The gravity anomalies that observed by ground and shipborne survey and calculated from GRACE satellite are combined by using spherical cap harmonic analysis (SCHA). In this study, ground gravity data from Korea Institute of Geoscience and Mineral Resource(KIGAM) and shipborne gravity data from National Ocean Research Institute(NORI) and Korea Ocean Research and Development institute(KORDI) were used. L-2 level GRACE Gravity Model (GGM02C) was also used for satellite gravity anomaly. The ground and shipborne surveyed data were combined and gridded using Krigging method with 0.05 degree interval and GRACE data were also gridded using the same method with 0.05 degree to harmonize with the resolution of SCHA that has coefficient up to 80. Generalized Minimal Residual(GMRES) inversion method was implemented for calculating the coefficients of SCHA using the gridded ground and satellite gravity anomalies that had 0 km and 50 km altitude, respectively. The results of inversion method showed good correlation of 0.950 and 0.995 with original ground and satellite data. The gravity anomaly using SCHA satisfies Laplace's equation, therefore, using these SCHA coefficients, gravity anomaly can be calculated at any altitude. In this study, gravity anomaly was calculated from 10 km to 60 km altitude and each altitude, very stable results were shown. The ground and shipborne gravity data that have higher resolution and satellite data in long wavelength are harmonized well with SCHA coefficients and successfully applied in South Korea area. If more continuous survey and muti-altitude surveyed data like airborne data available, more precise gravity anomaly can be acquired using SCHA method.

Geostatistical Interpretation of Sparsely Obtained Seismic Data Combined with Satellite Gravity Data (탄성파 자료의 해양분지 구조 해석 결과 향상을 위한 인공위성 중력자료의 지구통계학적 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kwon, Byung-Doo;Yoo, Hai-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.252-258
    • /
    • 2007
  • We have studied the feasibility of geostatistics approach to enhancing analysis of sparsely obtained seismic data by combining with satellite gravity data. The shallow depth and numerous fishing nets in The Yellow Sea, west of Korea, makes it difficult to do seismic surveys in this area. Therefore, we have attempted to use geostatistics to integrate the seismic data along with gravity data. To evaluate the feasibility of this approach, we have extracted only a few seismic profile data from previous surveys in the Yellow Sea and performed integrated analysis combining with the results from gravity data under the assumption that seismic velocity and density have a high physical correlation. First, we analyzed the correlation between extracted seismic profiles and depths obtained from gravity inversion. Next, we transferred the gravity depth to travel time using non-linear indicator transform and analyze residual values by kriging with varying local means. Finally, the reconstructed time structure map was compared with the original seismic section given in the previous study. Our geostatistical approach demonstrates relatively satisfactory results and especially, in the boundary area where seismic lines are sparse, gives us more in-depth information than previously available.

A Study on Interpretation of Gravity Data by using Iterative Inversion Methods (반복적(反復的) 역산법(逆算法)에 의(依)한 중력자료(重力資料)의 해석(解析)에 관(關)한 연구(硏究))

  • Roh, Cheol-Hwan;Yang, Sung-Jin;Shin, Chang-Soo
    • Economic and Environmental Geology
    • /
    • v.22 no.3
    • /
    • pp.267-276
    • /
    • 1989
  • This paper presents results of interpretaton of gravity data by iterative nonlinear inversion methods. The gravity data are obtained by a theoretical formula for two-dimensional 2-layer structure. Depths to the basement of the structure are determined from the gravity data by four interative inversion methods. The four inversion methods used here are the Gradient, Gauss-Newton, Newton-Raphson, and Full Newton methods. Inversions are performed by using different initial guesses of depth for the over-determined, even-determined, and under-determined cases. This study shows that the depth can be determined well by all of the methods and most efficiently by the Newton-Raphson method.

  • PDF

Geologic Structure Analysis from the Integration of Magnetotelluric and Gravity Models at Hwasan Caldera (화산칼데라 지역 중력 및 자기지전류 탐사 자료의 복합해석을 통한 지질구조 해석)

  • Park, Gye-Soon;Oh, Seok-Hoon;Lee, Heui-Soon;Kim, Jung-Ho;Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.21-26
    • /
    • 2008
  • A multi-geophysical surveys were carried out at Hwasan caldera which is located in Euisung Sub-basin. In order to overcome the limitation of the previous studies, dense gravity data and magnetotelluric (MT) data were obtained and integrated. In this study, the independent inversion models from gravity and MT method were integrated using a correlation and classification approaches to map geologic structure. The results of integration analysis indicated followings; 1) pyroclastic rocks around the central area of Hwasan caldera have lower density and resistivity when compared with those of neighborhood regions and are extended to around 1 km in depth, 2) the high resistivity and density intrusive igneous rocks are imaged around the ring fault boundary, and 3) the basement structure, which has low resistivity and high density, 5 km deep inferred by integration analysis. Also, for integration analysis, we suggested Structure Index method. This method is analyzed using Type Angle and Type Intensity, which are calculated by the spatial correlation of the physical properties. In this study, we can perform the integration analysis effectively using Structure Index method.

  • PDF

Gravity Field Interpretation for the Deep Geological Structure Analysis in Pohang-Ulsan, Southeastern Korean Peninsula (한반도 남동부 포항-울산지역 심부 지질구조 분석을 위한 중력장 해석)

  • Sohn, Yujin;Choi, Sungchan;Ryu, In-Chang
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.597-608
    • /
    • 2020
  • Even after the Gyeongju earthquake and the Pohang earthquake, hundreds of aftershocks and micro-earthquakes are still occurring in the southeastern part of the Korean Peninsula. These phenomena mean that the stress is constantly working, implying that another huge earthquake may occur in the future. Therefore, the gravity field interpretation method was used to analyze the deep geological structure of the Pohang-Ulsan region in the southeastern Korean Peninsula. First, a gravity survey was performed to collect the insufficient data and to calculate the detailed Bouguer gravity anomaly in the study area. Based on the gravity anomaly data, the location, direction, and maximum depth of deep fault lines were analyzed using the inversion methods "Curvature analysis" and "Euler deconvolution method". As a result, it is interpreted that at least six fault lines(C1~C6) exist in deep depth. The deep fault line C1 is well correlated to the Yeonil Tectonic Line(YTL), suggesting that YTL is extended up to about 4000m deep. The deep fault line C2 consists of several segment faults and well correlated to the fault lines on the surface. Inferred fault lines C3, C4, and C5 have an NW-SE direction, which is parallel to the Ulsan fault. The deep fault line C6 has the direction of NE-SW, and it is interpreted that the eastern boundary fault of Eoil Basin is extended to the deep. Comparing the inferred fault lines with the distribution of micro-earthquakes, the location of the deep fault line C1 is well correlated to the hypocenter of micro-earthquakes. This implies that faults in deep depth are related to the recent earthquakes in the southeastern Korean Peninsula.

3-D P-wave Velocity Structure in South Korea using Seismic Tomography (지진 토모그래피 방법을 이용한 남한에서의 3차원 P파 속도구조)

  • 박재우;민경덕;전정수;제일영
    • Economic and Environmental Geology
    • /
    • v.35 no.5
    • /
    • pp.445-454
    • /
    • 2002
  • 3-D P-wave velocity model in the southern Korean Peninsula is investigated by using the earthquake tomography method. This velocity model would be used to locate the exact hypocenter position, and also useful for our understanding of the crustal structure. The simultaneous inversion is used to get the minimum 1-D model and hypo-center relocation, which are used as an initial 3-D velocity model. The velocities in the minimum 1-D model are 6.04 km/s, 6.45 km/s, and 7.78 km/s between the depth of 0-19 km, 19-32 km, and 32-55 km respectively. In the 3-D P-wave velocity model, Layer 1 (0~3 km) has high velocities in Kyongsang basin, Yonglam massif, and Okchon folded belt, and low velocities in Kyonggi massif. In layer 2 (3~19 km) high velocities are predominent around Kyonsang basin and Yongnam massif except Yonil basin, but low velocities exist around Kyonggi massif and Okchon folded belt. In Laye. 3 (19~32 km) high velocities prevail throughout the southern part of Korean Peninsula, but low velocity does throughout the middle except SNU, YIN station in Konggi massif. In Layer 4 (32 km), the maximum velocity is showed in the middle and southwestern part, while the minimum velocity in the southeastern and coastal area. The depth of the velocity boundary corresponds to the crustal structure of the southern Korean Peninsula which is calculated by gravity data.

3-D Crustal Velocity Tomography in the Southern Part of The Korean Peninsula (한반도 남부지역의 3-D 속도 토모그래피)

  • Kim, So Gu;Li, Qinghe
    • Economic and Environmental Geology
    • /
    • v.31 no.2
    • /
    • pp.127-139
    • /
    • 1998
  • A new technique of simultaneous inversion for 3-D seismic velocity structure by using direct, reflected, and refracted waves is applied to the southeast part of the Korean Peninsula including Pohang Basin, Kyongsang Basin and Ryongnam Massif. Pg, Sg, PmP, SmS, Pn, and Sn arrival times of 44 events with 554 seismic rays are inverted for locations and crustal structure. $6{\times}6$ with $0.5^{\circ}$ and 8 layers (4 km each layer) model was inverted. 3-D seismic crustal velocity tomography including eight sections from surface to Moho, ten profiles along latitude and longitude are analyzed. The results are as follows: 1) the average velocity and thickness of sediment are 5.04 km/s and 3-4 km, and the velocity of basement is 6.11 km/s. The shape of velocity in shallower layer is agreement with Bouguer gravity anomaly (Cho et al., 1997). 2) the velocities fluctuate strongly in the upper crust. The velocity distribution of the lower crust under Conrad appears basically horizontal. 3) the average depth of Moho is 30.4 km, and velocity is 8.01 km/s. 4) from the velocity and depth of the sediment, the thickness, velocity and form of the upper crust, and the depth and form of Moho, we can find the obvious differences among Ryongnam Massif, Kyongsang Basin and Pohang Basin. 5) the deep faults (a Ulsan series faults) near Kyongju and Pohang areas can be found to be normal and/or thrust faults with detachment extended to the bottom of the upper crust.

  • PDF

A Study on Interpretation of Gravity Data on Two-Dimensional Geologic Structures by Iterative Nonlinear Inverse (반복적 비선형역산에 의한 2차원 지질구조의 중력자료 해석 연구)

  • Ko, Chin-Surk;Yang, Seung-Jin
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.479-489
    • /
    • 1994
  • In this paper, the iterative least-squares inversion method is used to determine shapes and density contrasts of 2-D structures from the gravity data. The 2-D structures are represented by their cross-sections of N-sided polygons with density contrasts which are constant or varying with depth. Gravity data are calculated by theoretical formulas for the above structure models. The data are considered as observed ones and used for inversions. The inversions are performed by the following processes: I) polygon's vertices and density contrast are initially assumed, 2) gravity are calculated for the assumed model and error between the true (observed) and calculated gravity are determined, 3) new vertices and density contrast are determined from the error by using the damped least-squares inversion method, and 4) final model is determined when the error is very small. Results of this study show that the shape and density contrast of each model are accurately determined when the density contrast is constant or vertical density gradient is known. In case where the density gradient is unknown, the inversion gives incorrect results. But the shape and density gradient of the model are determined when the surface density contrast is known.

  • PDF