• Title/Summary/Keyword: 중력탐사

Search Result 156, Processing Time 0.02 seconds

Case Stories of Microgravity Survey for Shallow Subsurface Investigation (고정밀 중력탐사를 이용한 천부 지질구조 조사 사례)

  • Park Yeong-Sue;Rim Hyoungrae;Lim Mutaek;Koo Sung Bon;Kim Hag Soo;Oh Seok Hoon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.181-186
    • /
    • 2005
  • Gravity method produces subsurface density distribution, which is direct information of soundness of basement. Therefore, microgravity is one of the most effective method for detections of limestone cavities, abandoned mine-shafts and other tunnels, The paper show the effectiveness of microgravity by three different field cases.

  • PDF

Precise Gravity Terrain Correction of Gravity Exploration for Small Anomalous Bodies (소규모 이상체의 중력탐사를 위한 정밀지형보정)

  • Lee, Heui-Soon;Rim, Hyoung-Rea
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • Many studies have successfully developed a number of terrain correction programs in gravity data. Furthermore, terrain data that is a basic data for terrain correction has widely been provided through internet. We have also developed our own precise gravity terrain correction program. The currently existing gravity terrain correction programs have been developed for regional scale gravity survey, thus a more precise gravity terrain correction program needs to be developed to correct terrain effect. This precise gravity terrain program can be applied on small size geologic targets, such as small scale underground resources or underground cavities. The multiquadric equation has been applied to create a mathematical terrain surface from basic terrain data. Users of this terrain correction program can put additional terrain data to make more precise terrain correction. In addition, height differences between terrain and base of gravity meter can be corrected in this program.

Regional-residual Separation of Microgravity Data (고정밀 중력탐사 자료의 광역-나머지 이상 분리)

  • Rim, Hyoungrea;Park, Gyesoon;Kim, Chang-Ryol
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.2
    • /
    • pp.80-87
    • /
    • 2019
  • In this paper, we propose a method to apply the polynomial fitting for regional-residual separation of microgravity data based on the characteristics of gravity anomaly without a prior information. Since the microgravity survey is usually carried out in small regions, it is common to approximate regional anomaly by the first-order polynomial plane. However, if the regional anomaly patterns are difficult to be approximated to a first-order plane, the complete gravity anomaly is divided into small zones enough to approximate first-order plane by means of Parasnis density estimation method. The regional-residual separation is then applied on the splitted zones individually. When the gravity anomalies can be splitted spatially, we showed that the residual anomalies can be more effectively extracted based on the regional geological structures by regional anomaly separation from each of the divided regions, rather than applying the entire data set at one time.

A Vertical Gravity Gradient Survey for Shallow Density Mapping (수직 중력 변화율 탐사 적용 사례)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon;Lee, Young-Chal
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.161-166
    • /
    • 2006
  • Vertical gravity gradient measurement offers greater structural resolution and detectability than gravity alone. Practical difficulties of field measurement of vertical gravity gradient have raised questions of its accuracy and utility. But, modern automated gravimeter of $1\;{\mu}Gal$ sensitivity makes it easier to measure vertical gradient with required accuracy. It is particularly effective to engineering and environmental problems which target shallow subsurface structure. This paper attempts to apply the vertical gravity gradient technique to high resolution density mapping. The method was generally reviewed and numerical inverse modeling was executed for comparing with conventional gravity. And actual vertical gravity gradient data surveyed overt karstic cavity area at Muan was analysed and interpreted.

  • PDF

A Microgravity for Mapping Karstic Cavities at Gaeun (가은지역 석회 공동 탐지를 위한 고정밀 중력탐사)

  • Park, Yeong-Sue;Rim, Hyoung-Rae;Lim, Mu-Taek;Koo, Sung-Bon
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.167-172
    • /
    • 2008
  • A microgravity survey was applied for detecting and mapping karstic cavities over limestone area at Gaeun. The gravity data were collected at about 1, 100 stations by 4 m interval. The density distribution beneath the profiles was drawn by two dimensional inversion based on the minimum support stabilizing functional, which generated better focused images of density discontinuities. We also imaged three dimensional density distribution by growing body inversion. The density image showed that the cavities were dissolved, enlarged and connected into a cavity network system.

  • PDF

Application of microgravity for detecting the mineshaft (폐갱도 확인을 위한 고정밀중력탐사)

  • Rim Hyoungrae;Park Yeong-Sue;Lim Mutaek;Koo Sung Bon;Jung Hyun Key;Kim Hag Soo;Jung Chang Ho;Kwon Byoung Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.251-254
    • /
    • 2005
  • Microgravity survey was carried out in order to detect an abandoned mineshaft. We tested the feasibility of cavity detection by means of numerical modeling and applied microgravity survey to detecting an abandoned mineshaft in the vicinity of Hawson mines, Junnam. The result shows the response of mineshaft where we expected.

  • PDF

Gravity Anomaly around Boam Deposit, Uljin: Implications on Economic Geology (울진 보암광상 일대 중력 이상: 광상학적 함의)

  • Oh, Il-Hwan;Heo, Chul-Ho;Shin, Young-Hong
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • Gravity exploration was conducted to determine the distribution of igneous complex related to lithium pegmatite in the Boam deposit of Uljin, Gyeongsangbuk-do, and the spatial relationship with the regional geology and ore bodies were studied. The gravity exploration result shows that the Boam deposit area is characterized by relatively low gravity anomaly that surrounds the deposit. The Boam deposit is located near the southwest-northeast directional boundary of gravity anomalies where igneous complex (granite gneiss) contacts with the Yuli and Wonnam groups in the southeast, Janggun limestone layers in the east-west direction, and Dongsugok metasedimentary rocks. While the western boundary in the southwest-northeast direction is relatively clear, there may also be unknown igneous complex that are not exposed on the surface at the eastern and southern boundaries because a relatively low gravity anomaly surrounds the deposit. The distribution characteristics of these hidden igneous complex will be used as useful data for predicting the distribution of the lithium pegmatite in the future.

공주 능치지역 천부 지하구조에 대한 지구물리학적 연구

  • Kim, Gi-Hyeon;Seo, Man-Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.4 no.2
    • /
    • pp.103-111
    • /
    • 2001
  • Geophysical survey was carried out to derive some information on the existence of near-surface anomalous body at Reung-Chi area in Kongju. Resistivity, seismic, magnetic and gravity method were applied. Geophysical survey that was applied was the electrical resistivity survey, seismic survey, magnetic survey, gravity survey. These surveys are analyzed to provide data of high resolution. As a result of analysis of resistivity survey, anomalies showing high resistivity anomaly than around appeared, and the one showing M-shape out of those explains the possibility that underground common or other underground structure or geographical anomalous zone could exist in the underground. As a result of analysis of seismic survey, it is clear that the low velocity layer is spread as far as the bottom of the underground. It is possible to presume that it is a phenomenon appearing while going through the underground space where it is lying in the underground. Area that shows unusual situation in interpretation of data on seismic waves are included into the area that once showed resistivity anomaly, the results of both seismic surveys come in accord. As a result of magnetic survey, a circle-shape of twin magnetic fields in the area where abnormalities are shown between electrical resistivity survey and seismic survey is appeared. Given the area of gravity survey, abnormalities whose density is different from the one around the bottom of the underground. As a result of analogizing the data of underground of the subsurface based on analysis of data from each survey, it was interpreted that anomalous zone exists commonly in the research areas.

  • PDF

An integrated airborne gravity survey of an offshore area near the northern Noto Peninsula, Japan (일본 노토 반도 북쪽 연안의 복합 항공 중력탐사)

  • Komazawa, Masao;Okuma, Shigeo;Segawa, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.88-95
    • /
    • 2010
  • An airborne gravity survey using a helicopter was carried out in October 2008, offshore along the northern Noto Peninsula, to understand the shallow and regional underground structure. Eleven flight lines, including three tie lines, were arranged at 2 km spacing within 20 km of the coast. The total length of the flight lines was ~700 km. The Bouguer anomalies computed from the airborne gravimetry are consistent with those computed from land and shipborne gravimetry, which gradually decrease in the offshore direction. So, the accuracy of the airborne system is considered to be adequate. A local gravity low in Wajima Bay, which was already known from seafloor gravimetry, was also observed. This suggests that the airborne system has a structural resolution of ~2 km. Reduction of gravity data to a common datum was conducted by compiling the three kinds of gravity data, from airborne, shipborne, and land surveys. In the present study, we have used a solid angle numerical integration method and an iteration method. We finally calculated the gravity anomalies at 300 m above sea level. We needed to add corrections of 2.5 mGals in order to compile the airborne and shipborne gravity data smoothly, so the accuracy of the Bouguer anomaly map is considered to be nearly 2 mGal on the whole, and 5 mGals at worst in limited or local areas.

Observation of gravity changes associated with variations of ground water table (지하수 수위변동에 따른 중력 변화 양상)

  • Eom, Joo-Young;Seo, Ki-Weon;Koo, Min-Ho;Kwon, Byung-Doo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.119-123
    • /
    • 2009
  • Gravity changes due to variations of groundwater level were measured at a ground water monitoring well, which is located at Kum-san, Korea, from November 2008 to September 2009 using Portable Earth Tide (PET) gravimeter. Groundwater level was monitored simultaneously with gravity observations. To extract gravity information from groundwater, we reduced gravity effect from atmospheric surface pressure, earth tides and its loading effect, polar motion and meter drift. In addition, in June 4, 2009, there was a pumping test at he observation well, and groundwater level and gravity variations were observed together successfully. Observation of gravity along with groundwater level is potentially useful for monitoring of aquifer water mass balance and water resources.

  • PDF