• Title/Summary/Keyword: 중금속 흡착

Search Result 524, Processing Time 0.031 seconds

Effect of Dye Wastewater on Heavy Metal Removal using Carboxylated Alginic Acid Bead (Carboxylated alginic acid bead를 이용한 중금속 제거에 대한 염료폐수의 영향 연구)

  • Jeon, Choong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.4
    • /
    • pp.74-80
    • /
    • 2009
  • Effect of dye wastewater on heavy metal removal using carboxylated alginic acid bead was performed. When carboxylated alginic acid bead was used as support, effect of dye wastewater on adsorption of $Pb^{2+}$ and $Cu^{2+}$ ions was very small. Also, when $Pb^{2+}$ was coexisted with dye wastewater, adsorption process was almost completed within 2-3 hrs and $Pb^{2+}$ ions (50 ppm) was almost removed with 0.3g of bead. This result means that carboxylated alginic acid bead has effective adsorbent for heavy metal removal in dye wastewater.

Adsorption characteristics of Pb by various particle sizes of microplastics in aqueous solution (수용액에서 입자크기에 따른 미세플라스틱의 Pb 흡착특성)

  • Taejung Ha;Minjune Yang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.149-149
    • /
    • 2023
  • 미세플라스틱은 입자크기가 5 mm 이하인 플라스틱으로 정의되며, 수계로 유입된 미세플라스틱은 내분비계 교란물질로 작용하여 생태계에 환경독성을 유발하고 오염물질을 흡착·운반할 수 있는 독성 물질의 매개체로서 미세플라스틱의 위해성에 대한 우려가 증가하고 있다. 본 연구는 수용액에서 다양한 미세플라스틱의 납(Pb) 흡착특성을 평가하고 미세플라스틱의 비표면적에 따른 흡착 효과를 비교하고자 하였다. 플라스틱 종류 중 HDPE (High-density Polyethylene)와 PVC (Polyvinyl Chloride)를 각각 세 가지 크기(Group 1: 2.5 mm - 1.0 mm, Group 2: 1.0 mm - 0.3 mm, Group 3: < 0.3 mm)로 제조하여 분류하였으며, 미세플라스틱 입자크기의 비표면적은 BET(Brunauer, Emmett, Teller)분석을 통하여 측정하였다. 담수환경 조성을 위해 pH 7로 조절한 Pb 용액의 농도(0, 0.5, 1, 5, 10, 30 mg/L)별 흡착실험을 수행하였으며 실험결과를 3가지 흡착등온식(Langmuir, Freundlich, Sips 모델)을 사용하여 미세플라스틱에서 Pb 흡착 거동을 나타내었다. BET 분석 측정결과, PVC의 경우 Group 3 > Group 2 > Group 1 순으로 PVC의 입자크기가 작을수록 비표면적이 크게 나타났으며, HDPE 비표면적 또한 비슷한 경향을 보였다. HDPE와 PVC에서 Pb의 흡착은 Langmuir 모델(R2 > 0.97)과 Freundlich 모델(R2 > 0.82)보다 Sips 모델(R2 > 0.98)이 흡착 거동을 설명하기에 가장 적합하였다. 최대흡착능(Qm) 상수는 입자크기가 작아질수록 흡착능이 높아지는 추세를 보였으며, 흡착세기(KF)와 흡착강도(n-1)는 각 플라스틱의 Group 3(HDPE KF = 0.028, PVC KF = 0.032; HDPE n-1 = 0.225, PVC n-1 = 0.547)에서 가장 높게 나타났다. 본 연구를 통해 HDPE와 PVC에서 Pb의 흡착특성은 Sips모델로 설명이 가능했으며, 이에 따라 Pb 흡착과정에 복수의 흡착메커니즘이 작용하고 있음을 유추해볼 수 있었다. 미세플라스틱의 입자크기와 비표면적이 Pb 흡착량에 영향을 미치는 것을 알 수 있었으며, 미세플라스틱이 중금속을 흡착하여 생물체 내로 전이시킬 수 있는 매개체 역할의 가능성을 확인하였다.

  • PDF

Utilization of Zeolite in Waste Water Treatment. (폐수처리제(廢水處理劑)로서의 Zeolite의 이용(利用))

  • Lee, Jeon-Sig;Lee, Jyung-Jae;Choi, Jyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.6 no.2
    • /
    • pp.46-52
    • /
    • 1987
  • This study of adsorption and column percolation was conducted to examine the utilization of natural zeolite for the removal of heavy metals from waste water to compare with that of absorption activated carbon. The adsorption of heavy metals by natural zeolite was conformed to the Freundlich isotherm (1/n values: $0.12{\sim}0.45$, K values: $18.77{\sim}59.48$) and natural zeolite was turned out to be an effective adsorbent of heavy metals. At the same particle size and percolation velocity, zeolite adsorbed a greater amount of heavy metals was adsorbed on natural zeolite than activated carbon. The smaller the particle size, the more heavy metals that were adsorbed. It was postulated that the most effective size as an adsorbent of heavy metals from waste water ranged from 0.5 to 2.0mm. The slower the percolation velocity that of the heavy metal solution in column, the more heavy metals were adsorbed. Natural zeolite in a single solution adsorbed more heavy metals than that in mixed solution, and the order of the adsorption amount on natural zeolite was Cu>Zn>Cd.

  • PDF

A Study on Contaminant Sorption Capacity of Soil Liner for Seashore Waste Landfill by Using Column Test Apparatus (주상시험장치를 이용한 해안 폐기물 매립장 지반토지 오염물 흡착능에 관한 연구)

  • Jang, Yeon-Su;Han, Seong-Gil;Kim, Su-Sam
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.75-84
    • /
    • 1997
  • In this paper, the retardation capacity of marine clay and weathered soil of seashore waste landfill is analyzed by using a laboratory column apparatus for organic and inorganic components which can represent the components of the leachate of municipal waste landfill. The results show that sorption capacity marine clay for potassium is larger than that of weathered soil. Lead and cadmium are adsorbed completely at concentrations higher than the real concentrations developed in the landfill. The bottom soils of seashore landfill can also retard some nondegradable components of organics although their sorption capacities for organics were less than those for inorganics.

  • PDF

Removal Properties of Nickel and Copper ions by Activated Carbon and Carbon Nanotube (활성탄과 카본나노튜브를 이용한 수용액상의 니켈과 구리 제거 특성)

  • Jung, Yong-Jun
    • Journal of Wetlands Research
    • /
    • v.20 no.4
    • /
    • pp.410-416
    • /
    • 2018
  • This experiment was carried out with the purpose of testing nickel and copper adsorption abilities of multi wall carbon nanotube (MWCNT) and activated carbon. In the acidic condition, only MWCNT was effective for removing nickel and copper ion in the aqueous phase while activated carbon rarely remove them. The MWCNT and heavy metals adsorption reaction followed pseudo-first order kinetic. When the initial pH value was neutral (pH=7), nickel was rapidly removed by MWCNT and activated carbon in 4 hr (99.02 %, 80.30 %). Also, copper ion was rapidly removed by both adsorbents in 4 hr when the initial pH was 7 (100 %, 99.73 %). Increasing of adsorbent dosages affect the pH evolution and heavy metal ions removal (0 ~ 99%). Also, oxidation pretreatment enhanced the adsorption efficiency of MWCNT.

Competitive Adsorption Characteristics of Rapid Cooling Slag in Single- and Multi-Metal Solutions (단일 및 복합중금속용액에서 제강급랭슬래그의 경쟁흡착특성)

  • Park, Jong-Hwan;Kim, Hong-Chul;Kim, Seong-Heon;Lee, Seong-Tae;Kang, Byung-Hwa;Kang, Se-Won;Seo, Dong-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.35 no.1
    • /
    • pp.24-31
    • /
    • 2016
  • BACKGROUND: Heavy metal adsorption not only depends on rapid cooling slag(RCS) characteristics but also on the nature of the metals involved and on their competitive behavior for RCS adsorption sites. The goal of this study was to investigate the competitive absorption characteristics of Cu, Cd and Zn in single- and multi-metal forms by RCS.METHODS AND RESULTS: Both single- and multi-metal adsorption experiments were conducted to determine the adsorption characteristics of RCS for the heavy metals. Adsorption behaviors of the heavy metals by RCS were evaluated using both the Freundlich and Langmuir adsorption isotherm equations. The maximum adsorption capacities of metals by RCS were in the order of Cu(16.6 mg/g) > Cd(8.1 mg/g) > Zn(6.2 mg/g) in the single-metal adsorption isotherm and Cu(14.5 mg/g) >> Zn(1.3 mg/g) > Cd(0.6 mg/g) in the multi-metal adsorption isotherm. Based on data obtained from Freundlich and Langmuir adsorption models and three-dimensional simulation, multi-metal adsorption behaviors differed from single- metal adsorption due to competition. Cadmium and Zn were easily exchanged and substituted by Cu during multi-metal adsorption.CONCLUSION: Results from adsorption experiments indicate that competitive adsorption among metals increases the mobility of these metals.

PARTITIONING OF HEAVY METALS IN SEDIMENTS FROM JINHAE BAY, KOREA (진해만 퇴적물 중의 중금속 분포)

  • Hong, Gi Hoon;Park, Yong Ahn;Lee, Kwang Woo
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.180-184
    • /
    • 1983
  • Sediments were collected from eight stations in JJJJinhae Bay and heavy metals were fractionated into the adsoibed reducible, oxidizable and residual fractions. Cd, Cu, Pb and Zn in each fraction were determined by atomic absorption spectriphotmetry. Cd was shown to be mainly in the adsorbed form, Cu in the oxidizable and resedual fractions, and Pb and Zn mainly in the seducible fractions. The total concentrations of Cu, Pb and Zn in sediments decreased gradually with increasing distance from the heak of the bay, and the relationship of linear segression was obtained.

  • PDF

Characteristics of Heavy Metal Biosorption by Pseudomonas cepacia KH410 (Pseudomonas cepacia KH410의 중금속 흡착특성)

  • 박지원;김영희
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.197-203
    • /
    • 2001
  • An ubiquitous bacterium, Pseudomonar cepacia KH410 was isolated from fresh water plant root and identified. Adsorption of heavy metals of lead, cadmium and copper by this strain was investigated. Optimal conditions foradsorption was 1.0 dry g-biomass, at pH 4.0 and temperature of $40^{\circ}C$. Adsorption equilibrium reached max-imum after 120 min in 1000 mg/l metal solutions. The adsorption capacity (K) of lead was 5.6 times higher thancadmium and 4.0 times higher than that of copper. Adsorption of lead was applicable for Langmuir modelwhereas Freundlich model for cadmium and copper, respectively. Adsorption strength (1/n) of heavy metal ionswere in the order of lead>copper>cadmium. Uptake capacity of lead, cadmium and copper by dried cell was83.2,42.0,65.2 mg/g-biomass, respectively. Effective desorption was induced 0.1 M HCI for lead and 0.1 $HNO_3$ for cadmium and copper. Pretreatment to increase ion strength was the most effective with 0.1 M KOH.Uptake by immobilized cell was 77.8,58.5,71.2 mg/g-biomass for lead, cadmium and copper, respectively. Theimmobilized cell was more effective than ion exchange resin on removal of heavy metals in solution containinglight metals.

  • PDF

Removal of Heavy Metal Ions Using Wood Charcoal and Bark Charcoal (목탄 및 수피탄의 중금속 이온 제거)

  • Jo, Tae-Su;Lee, Oh-Kyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.4
    • /
    • pp.29-37
    • /
    • 2007
  • To evaluate the effect of carbonization temperature of charcoal on the heavy metal adsorption property, Quercus mongolica wood and Larix kaempferi bark powder (100~60 mesh) were carbonized at between 400 and $900^{\circ}C$ at intervals of $100^{\circ}C$. In the properties of carbonized materials which affect the adsorption ability, pH increased with increasing the carbonization temperature, so that the pHs of wood and bark charcoal carbonized at $900^{\circ}C$ were 10.8 and 10.4, respectively. Also, in both materials, the carbon content ratio became larger as the carbonization temperature was raised. At the same carbonization temperature, carbon content ratio of the bark charcoal tended to be greater than that of the wood charcoal. In case of iodine adsorption which indicates the adsorption property in liquid phase, the wood charcoal showed higher adsorption value than the bark charcoal. From the investigation of adsorptive elimination properties of the charcoals against 15 ppm Cd, Zn, and Cu, the higher the carbonization temperature, the greater elimination ratio was. In comparison, the wood charcoal presented higher elimination ratio than that of the bark charcoal. In the wood charcoals carbonized at higher than $500^{\circ}C$, especially, 0.2 g of the charcoal was enough to eliminated almost 100% of the heavy metal ions. Heavy metal ion elimination ratio of the charcoals depended on the kinds of adsorbates. The effectiveness of adsorbates in adsorptive elimination by the charcoals were in order of Cu > Cd > Zn. This is because the physicochemical interaction between the adsorbate and adsorbent affects their adsorption properties, it is considered that subsequent researches are needed to improve the effectiveness of heavy metal adsorption by the charcoals.

Adsorption of Heavy Metal Ions on Sambo Mine Runoff by Barks (수피에 의한 삼보광산 폐수의 중금속 흡착)

  • Ahn, Byoung-Jun;Koh, Kyung-Moo;Lee, Hyung;Paik, Ki-Hyon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.4
    • /
    • pp.40-47
    • /
    • 2001
  • To remove $Zn^{2+}$(422 ppm) and $Mn^{2+}$(53.1 ppm) from Sambo mine runoff(the total amount of heavy metals : 107 ppm) in Whasung, packed bed column tests were run in two stages plastic columns. The non-treated bark(Pinus densiflora, Quercus accutisima) of each 6 kg were placed into columns. The height and diameter of column were 60 cm and 45 cm, respectively. Flow rate ranged to 1 ${\ell}$/min for 15 days. The concentration of heavy metal ions in filtrate was determinded periodically. By the treatment of oak bark the initial concentration of $Zn^{2+}$ was maintained under 10 ppm(the adsorption rate: 64%) for 24 hr, while pine bark kept the initial concentration of $Zn^{2+}$ under 20 ppm(the adsorption rate: 53%) for 15 hr. However the initial concentration of $Mn^{2+}$ was reduced only to 10.6~18.6 ppm (the adsorption rate: 20~35%) until 10 hr. Thereafter, the adsorption of $Mn^{2+}$ by bark decreased rapidly. There was little difference in the adsorption ratio of $Mn^{2+}$ between oak and pine bark. The use of bark to remove $Zn^{2+}$ in Samba mine runoff was effective, but it wasn't proper to remove $Mn^{2+}$.

  • PDF