• Title/Summary/Keyword: 중금속 용출

Search Result 383, Processing Time 0.028 seconds

Scaling up of single fracture using a spectral analysis and computation of its permeability coefficient (스펙트럼 분석을 응용한 단일 균열 규모확장과 투수계수 산정)

  • 채병곤
    • The Journal of Engineering Geology
    • /
    • v.14 no.1
    • /
    • pp.29-46
    • /
    • 2004
  • It is important to identify geometries of fracture that act as a conduit of fluid flow for characterization of ground water flow in fractured rock. Fracture geometries control hydraulic conductivity and stream lines in a rock mass. However, we have difficulties to acquire whole geometric data of fractures in a field scale because of discontinuous distribution of outcrops and impossibility of continuous collecting of subsurface data. Therefore, it is needed to develop a method to describe whole feature of a target fracture geometry. This study suggests a new approach to develop a method to characterize on the whole feature of a target fracture geometry based on the Fourier transform. After sampling of specimens along a target fracture from borehole cores, effective frequencies among roughness components were selected by the Fourier transform on each specimen. Then, the selected effective frequencies were averaged on each frequency. Because the averaged spectrum includes all the frequency profiles of each specimen, it shows the representative components of the fracture roughness of the target fracture. The inverse Fourier transform is conducted to reconstruct an averaged whole roughness feature after low pass filtering. The reconstructed roughness feature also shows the representative roughness of the target subsurface fracture including the geometrical characteristics of each specimen. It also means that overall roughness feature by scaling up of a fracture. In order to identify the characteristics of permeability coefficients along the target fracture, fracture models were constructed based on the reconstructed roughness feature. The computation of permeability coefficient was performed by the homogenization analysis that can calculate accurate permeability coefficients with full consideration of fracture geometry. The results show a range between $10^{-4}{\;}and{\;}10^{-3}{\;}cm/sec$, indicating reasonable values of permeability coefficient along a large fracture. This approach will be effectively applied to the analysis of permeability characteristics along a large fracture as well as identification of the whole feature of a fracture in a field scale.

Characterization of Low-Temperature Pyrolysis and Separation of Cr, Cu and As Compounds of CCA-treated Wood (CCA (Chromated Copper Arsenate) 처리 목재의 저온 열분해와 CCA 유효 성분분리 특성)

  • Lim, Kie-Pyo;Lee, Jong-Tak;Bum, Jung-Won
    • Journal of the Korean Wood Science and Technology
    • /
    • v.35 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This study was carried out to separate the heavy toxic metals in eco-building materials by low-temperature pyrolysis, especially arsenic (As) compounds in CCA wood preservative as a solid in char. The pyrolysis was carried out to heat the CCA-treated Hemlock at $280^{\circ}C$, $300^{\circ}C$, $320^{\circ}C$, and $340^{\circ}C$ for 60 mins. Laboratory scale pyrolyzer composed of [preheater$\rightarrow$pyrolyzer$\rightarrow$1st water scrubber$\rightarrow$2nd bubbling flask with 1% $HNO_3$ solution$\rightarrow$vent], and was operated to absorb the volatile metal compound particulates at the primary water scrubber and the secondary nitric acid bubbling flask with cooling condenser of $4^{\circ}C$ under nitrogen stream of 20 mL/min flow rate. And the contents of copper, chromium and arsenic compounds in its pyrolysis such as carbonized CCA treated wood, 1st washing and 2nd washing liquors as well as its raw materials, were determined using ICP-AES. The results are as follows : 1. The yield of char in low-temperature pyrolysis reached about 50 percentage similar to the result of common pyrolytic process. 2. The higher the pyrolytic temperature was, the more the volatiles of CCA, and in particular, the arsenic compounds were to be further more volatile above $320^{\circ}C$, even though the more repetitive and sequential monitorings were necessary. 3. More than 85 percentage of CCA in CCA-treated wood was left in char in such low-temperature pyrolytic condition at $300^{\circ}C$. 4. Washing system for absorption of volatile CCA in this experiment required much more contacting time between volatile gases and water to prevent the loss of CCA compounds, especially the loss of arsenic compound. 5. Therefore, more complete recovery of CCA components in CCA-treated wood required the lower temperature than $320^{\circ}C$, and the longer contacting time of volatile gases and water needed the special washing and recovery system to separate the toxic and volatile arsenic compounds in vent gases.

A Study on Migration of Heavy Metals from Kitchen Utensils Including Glassware, Ceramics, Enamel, Earthenware and Plastics (유리제 등 조리기구 중 중금속 이행에 관한 연구)

  • Choi, Jae-Chon;Park, Se-Jong;Goh, Hyeah;Lee, Ju Yeun;Eom, Mi Ok;Kim, Meehye
    • Journal of Food Hygiene and Safety
    • /
    • v.29 no.4
    • /
    • pp.334-339
    • /
    • 2014
  • The purpose of our study was to investigate the migration level of lead (Pb), cadmium (Cd), antimony (Sb), arsenic (As), hexavalent chromium ($Cr^{6+}$) and mercury (Hg) from cookwares into food simulants and to evaluate the safety of each heavy metals. The test articles for heavy metals were glassware, ceramics, enamel, earthenware, polypropylene and polyethylene cookwares for Pb and Cd, enamel for Sb, earthenware for As, polyethylene and polypropylene cookwares for $Cr^{6+}$ and Hg. All the article samples of 391 intended for contact with foods were purchased in domestic markets. Pb, Cd, Sb and As were analyzed by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES), $Cr^{6+}$ by UV visible spectrophotometer and Hg by mercury analyzer. The migration levels of heavy metals in all the samples were within the migration limits of Ministry of Food and Drug Safety (MFDS). As a result of safety evaluation, our results showed that the estimated daily intakes (EDI, mg/kg bw/day) were $9.12{\times}10^{-6}$ and $8.83{\times}10^{-7}$ for Pb and Cd from ceramics and $1.19{\times}10^{-5}$, $1.23{\times}10^{-5}$ and $7.52{\times}10^{-6}$ for Pb, Cd and Sb from enamel. Tolerable daily intakes (TDI, mg/kg bw/day) were established respectively as 0.0036, 0.00081, 0.0021, and 0.0006 for Pb, Cd, As and Hg by JECFA (Joint FAO/WHO Expert Committee on Food Additives), as 0.0060 for Sb by WHO (World Health Organization). When comparing with TDIs, the EDIs accounted for 0.25% and 0.11% for Pb and Cd from ceramics and 0.33%, 1.52% and 0.13% for Pb, Cd and Sb from enamel.