• Title/Summary/Keyword: 중금속 및 비소

Search Result 239, Processing Time 0.031 seconds

혐기성퇴적물에서 비소거동에 미치는 미생물의 영향

  • 이종운;이상우;김경웅;윤정한
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.82-84
    • /
    • 2003
  • 산업화가 가속화되며 독성 중금속에 의한 토양, 지하수 및 하상퇴적물의 오염사례가 증가하고 있다. 지표 산화환경에서의 이들 중금속의 이동 및 거동에 관한 연구는 그간 수차례 수행된 바 있고 이에 관하여 적절한 오염처리기법 개발에 관한 연구도 다수 이루어지고 있다. 그러나 중금속이 심부 환원환경으로 이동한 경우에 대하여는 이들 오염물질의 거동 및 그에 따른 적절한 처리에 관한 연구가 거의 수행된 바 없는 실정이다. (중략)

  • PDF

Remediation of Mine Tailings Contaminated with Arsenic and Heavy Metals: Removal of Arsenic by Soil Washing (비소와 중금속으로 오염된 광미의 정화: 토양세척에 의한 비소 제거)

  • Kim, Tae-Suk;Kim, Myoung-Jin
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.8
    • /
    • pp.808-816
    • /
    • 2008
  • In the present paper, a study has been performed on remediating mine tailings around abandoned mine contaminated with high concentrations of arsenic and heavy metals using the technique of soil washing. Through the removal experiment of arsenic, the optimal conditions in the type and concentration of washing reagent, mixing ratio of mine tailings and washing reagent, and washing time were derived. Results showed that the most effective washing reagents to remove arsenic from mine tailings were oxalic acid(72% removal efficiency) and phosphoric acid(65%), while the oxalic acid(89%) was the most effective in removing the heavy metals containing Cu. In addition, the most economical and efficient washing concentration was 0.25 M and the most suitable washing time was 30 minutes. The optimal mixing ratio of mine tailings and washing reagent was 1 : 20(mass/vol) from the viewpoint of minimization of wastewater produced after the washing, as well as the washing effectiveness. Although the mixture of washing reagents did not help in removal of arsenic, it could lead to much elevated synergy effect on removing Cu and Zn, compared with the single reagent.

Trace Metal Contents in Cereals, Pulses and Potatoes and Their Safety Evaluations (우리나라 곡류, 두류 및 서류중 중금속 함량 및 안전성 평가)

  • 김미혜;장문익;정소영;소유섭;홍무기
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.29 no.3
    • /
    • pp.364-368
    • /
    • 2000
  • 국내에서 생산된 곡류 9종 416건, 두류 5종 296건 및 서류 2종 156건에 대해 수은 함량은 Mercury Analyzer로, 납, 카드뮴, 비소, 구리, 망간, 아연 등은 습식분해 후 ICP로 분석하였다. 본 연구 결과, 곡류중 중금속 함량[최소~최대(평균),mg/kg]은 다음과 같았다. 수은 0.0001~0.051(0.007), 납 0.01~0.39(0.13), 카드뮴 0.001~0.098(0.023), 비소 0.01~0.38(0.09), 구리 0.06~11.85(1.73), 망간 0.91~39.15(7.47), 아연 1.35~24.15(9.32) mg/kg으로 나타났다. 또한 두류중 중금속 함량(mg/kg)은 수은 0.0002~0.031(0.005), 납 0.01~0.38(0.12), 카드뮴 0.005~0.098(0.030), 비소 0.01~0.37(0.10), 구리 0.03~6.56(2.44), 망간 0.85~22.97(8.16), 아연 2.40~40.18(11.25) mg/kg이었다 서류중 중금속 함량(mg/kg)은 수은 0.002~0.036(0.017), 비소0.01~0.20(0.08), 구리 0.02~2.91(0.84), 망간 0.26~9.48(2.54), 아연 0.35~6.11(2.23)mg/kg이었다. 본 연구에서 얻어진 분석치들은 국내외 다른 연구자들의 분석치와 비슷한 것으로 나타났으며, 이는 우리나라에서 생산된 곡류, 두류, 서류중의 중금속 함유량은 오염된 것이 아닌 자연함유량 수준인 것으로 파악되어 우리나라 사람이 이들 농산물에서 섭취하는 중금속량으로 인한 위해성은 없는 것으로 판단된다. 또한 우리나라 국민이 곡류, 두류, 서류 등을 통해 섭치하는 납, 수은, 카드뮴 등의 중금속 주간섭취량은 FAO/WHO에서 중금속 안전성 평가를 이해 정한 잠정주간섭취혀용량인 PTW1의 0.2~19%를 차지하고 있다.

  • PDF

Changes of Polyamine Content and Phytoavailability in Lactuca sativa cultivated in Cadmium and Arsenic Treated Soil (카드뮴과 비소처리가 상추의 polyamine함량 및 유효도에 미치는 영향)

  • Moon, Kwang-Hyun;Koh, Mun-Hwan;Kim, Won-Il;Jung, Goo-Bok;Kim, Kyung-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.223-227
    • /
    • 2000
  • Absorption of Cadmium(Cd) and Arsenic(As) by lettuce following to the change of polyamine content in lettuce were examined to find the effect of these elements on lettuce growth and on the basic resistance mechanism. As the contents of Cd and As were increased in soil, the contents of these elements were significantly increased in lettuce but lettuce growth was decreased. Sequential fractionation experiment of the Cd and As treated soil was shown that exchangeable, dilute acid extractable, and organically bound form, which were more mobile and phyto-available, of Cd were increased by 5.6, 42.9, and 56.7% during a growing season whereas 17.6, 25.0, and 24.1% were increased in case of As, respectively. Specially, the Cd content of leaves and roots in lettuce was positively correlated with exchangeable, dilute acid extractable, and residual form of Cd in the treated soil. However, the As content of roots in lettuce was positively correlated with all chemical forms of As in the treated soil. The contents of putrescine and cadaverine, a kind of polyamine, were also increased in lettuce as both elements were increased in soil.

  • PDF

Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment (국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구)

  • Song, Dae-Sung;Lee, Jong-Un;Ko, Il-Won;Kim, Kyoung-Woong
    • Economic and Environmental Geology
    • /
    • v.40 no.5
    • /
    • pp.575-585
    • /
    • 2007
  • Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.

Residue of Harmful Heavy Metals in Swine Tissue and Feedstuff (돈육 및 양돈사료중 유해중금속의 잔류량 조사)

  • 조태행;정갑수;손성완;박종명;박근식
    • Journal of Food Hygiene and Safety
    • /
    • v.2 no.3
    • /
    • pp.103-108
    • /
    • 1987
  • ABSTRACT-The study was to investigate the residue of the harmful heavy metals in the random samples of feed from piggery, formula feeed for swine and ingredient feed from feed mill and analyzed for Cd, Pb and As by using Atomic Absorption Spectrophotometer and Inductively Coupled Argon Plasmas. Mean concentrations of Cd, Pb and As (ppm) were, for feed from piggery 1.08-0.85, 5.34-4.29 and 4.30-2.37, for formula feed from feed mill, 0.90-0.51, 5.84-5.25 and 2.41-0.84, and for ingredient feed from feed mill, 0.35-0.38, 4.38-4.94 and 2.66-1.12, respectively. It showed the highest amount of Cd, Pb and As in kidney and liver than in the other organs, and the lowest amount in the muscle.muscle.

  • PDF

Stabilization of Heavy Metal Contaminated Paddy Soils near Abandoned Mine with Steel Slag and CaO (제강슬래그와 CaO를 이용한 폐광산 주변 중금속 오염 농경지 토양의 안정화 처리 연구)

  • Son, Jung-Ho;Roh, Hoon;Lee, Sun-Young;Kim, Sung-Kyu;Kim, Gil-Hong;Park, Joong-Kyu;Yang, Jae-Kyu;Chang, Yoon-Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.6
    • /
    • pp.78-86
    • /
    • 2009
  • Applicability of CaO and steel slag as stabilizers in the treatment of field and paddy soils near Pungjeong mine contaminated with arsenic and cationic heavy metals was investigated from batch and column experiments. Immobilization of heavy metals was evaluated by TCLP dissolution test. Immobility of heavy metal ions was less than 15% when steel slag alone was used. This result suggests that $Fe_2O_3$ and $SiO_2$, known as the major component of steel slag, have little effect for the immobilization of heavy metal ions due to acidity of TCLP solution. Immobilization of cationic heavy metals was little affected by the ratio of CaO and steel slag while arsenic removal was increased as the ratio of steel slag to CaO increased. In the column test, concentrations of both arsenic and cationic heavy metals in effluents were below the water discharge guideline over the entire reaction period. This result can be explained by the immobilization of cationic heavy metals from the increased pH in soil solution as well as by the formation of insoluble $Ca_3(AsO_4)_2$. From this work, it is possible to suggest that arsenic and cationic heavy metals can be concurrently stabilized by application of both CaO and steel slag.

Evaluation of Growth Characteristics and Heavy Metal Absorption Capacity of Festuca ovina var. coreana in Heavy Metal-Treated Soils (중금속 처리한 토양에서 참김의털의 생육특성과 중금속 흡수능력 평가)

  • Keum Chul, Yang
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.4
    • /
    • pp.259-268
    • /
    • 2022
  • In this study, seeds of Festuca ovina var. coreana growing in waste coal landfills exposed to heavy metal contamination for a long time were collected, and growth characteristics and heavy metal accumulation capacity were evaluated through greenhouse cultivation experiments with germinated seedlings, and was conducted for the applicability of phytoremediation technology. Concentration gradients of arsenic-treated artificial soil were 25, 62.5, 125, and 250 mg/kg, respectively, lead concentrations were 200, 500, 1000, and 2000 mg/kg, and cadmium concentrations were 15, 30, 60, and 100 mg/kg, respectively In the arsenic, lead, and cadmium-treated experimental groups, the number of leaves of F. ovina var. coreana decreased in all compared to the control group except for the lead-treated groups (200, 500, and 1000 mg/kg). Length growth of the shoot part was increased in all of the arsenic treatment groups compared to the control group, but decreased in all of the root parts. In the 1000 and 2000 mg/kg lead treatment groups, lengths increased compared to the control group, but in the other treatments, they were shorter than the control group. In the case of the cadmium treatment group, all of the shoot parts were increased compared to the control group, and all of the root parts were decreased. In the case of arsenic treatment, the biomass was decreased at all parts and all concentrations compared to the control group. The 200, 500, and 1000 mg/kg lead treatments showed larger biomass than the control group in both shoot and root parts. In the cadmium treatment group, the biomass of both shoot and root parts decreased compared to the control group. As the concentration of heavy metal treatment increased, both the number of leaves and the biomass by plant parts tended to decrease, and the length growth of the shoot part tended to increase slightly, but the root part tended to decrease slightly. The arsenic accumulation concentrations of the shoot and root parts of the 62.5 mg/kg arsenic treatment area were 9.4 mg/kg and 253.3 mg/kg, respectively. While the shoot part of the 250 mg/kg arsenic treatment area withered away, the arsenic accumulation concentration in the root part was analyzed to be 859.1 mg/kg, In the 2,000 mg/kg lead treatment area, the shoot and root parts accumulated 10,308.1 and 11,012.0 mg/kg, which were 1.1 times higher than the root parts. At 100 mg/kg cadmium treatment, the shoot and root parts were 176.0 and 287.2 mg/kg, and the root part accumulated 1.6 times higher than the shoot part. As a result of tolerance evaluation of F. ovina var. coreana, multi-tolerance to three heavy metals was confirmed by maintaining growth without dying in all treatment groups of arsenic, lead, and cadmium. Plant extraction (phytoextraction) of F. ovina var. coreana was verified as a species that can be applied up to 2,000 mg/kg of soil lead contamination.