Study on Geochemical Behavior of Heavy Metals by Indigenous Bacteria in Contaminated Soil and Sediment

국내 일부 오염 토양 및 퇴적물 내 토착 미생물에 의한 중금속의 지구화학적 거동 연구

  • Song, Dae-Sung (Microbial Geochemistry Lab. (MIGEL), Department of Geosystem Engineering, Chonnam National University) ;
  • Lee, Jong-Un (Microbial Geochemistry Lab. (MIGEL), Department of Geosystem Engineering, Chonnam National University) ;
  • Ko, Il-Won (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim, Kyoung-Woong (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST))
  • 송대성 (전남대학교 지구시스템공학과) ;
  • 이종운 (전남대학교 지구시스템공학과) ;
  • 고일원 (광주과학기술원 환경공학과) ;
  • 김경웅 (광주과학기술원 환경공학과)
  • Published : 2007.10.28

Abstract

Microbial control of the geochemical behavior of heavy metals (Cd, Cu, Pb, and Zn) and As in contaminated subsurface soil and sediment was investigated through activation of indigenous bacteria with lactate under anaerobic condition for 25 days. The results indicated that dissolved Cd, Pb and Zn were microbially removed from solutions, which was likely due to the formation of metal sulfides after reduction of sulfate by indigenous sulfate-reducing bacteria. Soils from the Dukeum mine containing a large amount of sulfate resulted in complete removal of dissolved As after 25 days by microbial activities, while there were gradual increases in dissolved As concentration in soils from the Hwabuk mine and sediments from the Dongducheon industrial area which showed low $SO_4{^2-}$ concentrations. Addition of appropriate carbon sources and sulfate to contaminated geological media may lead to activation of indigenous bacteria and thus in situ stabilization of the heavy metals; however, potential of As release into solution after the amendment should be preferentially investigated.

지하 심부 토양 및 퇴적물 내 토착 미생물의 활성화에 따른 중금속 거동을 이해하기 위하여, 독성 중금속으로 오염된 국내 일부 지역의 시료를 대상으로 혐기적 환경에서 유산염(lactate)을 탄소원으로 투입한 후 약 25일간에 걸친 비소 및 중금속(카드뮴, 구리, 납, 아연) 함량 변화를 관찰하였다. 실험 결과, 미생물이 투입된 시료의 경우 미생물이 투입되지 않은 비교시료에 비하여 용존 카드뮴, 납, 아연이 효과적으로 제거되었으며, 이는 토착 황산염 환원(sulfate-reducing) 박테리아의 활성화로 인해 생성된 환원상태의 황이 이들 중금속과 황화물을 형성하며 침전시켰기 때문으로 여겨진다. 비소의 경우, 미생물을 투입한 시료 중 황산염의 함량이 높은 덕음 토양에서는 제거율이 높은 반면 황산염의 함량이 상대적으로 낮은 화북 토양, 동두천 퇴적물에서는 지속적으로 그 함량이 증가하였다. 적절한 탄소원 및 황산염을 투입해 독성 중금속으로 오염된 지질 매체 내의 토착 미생물을 활성화시킨다면 이들 중금속의 원위치(in situ) 고정화를 통한 이동도 감소의 효과를 볼 수 있을 것으로 여겨지나, 비소로 동시에 오염된 경우 발생할 수 있는 비소 용출 가능성에 대한 고려가 필요하다.

Keywords

References

  1. Abdelouas, A., Lutze, W., Gong, W., Nuttall, E.H., Strietelmeir, B.A. and Travis, B.J. (2000) Biological reduction of uranium in groundwater and subsurface soil. Sci. Total. Environ., v. 250, p. 21-35 https://doi.org/10.1016/S0048-9697(99)00549-5
  2. Alloway, B.J. (1990) Heavy Metals in Soils. Blackie and Son
  3. Amann, R., Snaidr, J. and Wagner, M. (1996) In situ visualization of high genetic diversity in a natural microbial community. J. Bacteriol., v. 178, p. 3496-3500 https://doi.org/10.1128/jb.178.12.3496-3500.1996
  4. Bowen, H.J.M. (1979) Environmental Chemistry of the Elements. Academic Press, New York, 333 p
  5. Chatain, V., Bayard, R., Sanchez, F., Moszkowicz, P. and Gourdon, R. (2005) Effect of indigenous bacterial activity on arsenic mobilization under anaerobic conditions. Environ. Int., v. 31, p. 221-226 https://doi.org/10.1016/j.envint.2004.09.019
  6. Grandlic, C.J., Geib, I., Pilon, R. and Sandrin, T.R. (2006) Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria. Environ. Pollut., v. 144, p. 119-126 https://doi.org/10.1016/j.envpol.2005.12.029
  7. Ha, W.K., Lee, J.-U. and Jung, M.C. (2006) Study on geomicrobiological reductive precipitation of uranium and its long-term stabilization. J. Kor. Soc. Geosystem Eng., v. 43, p. 331-338
  8. Herbel, M. and Fendorf, S. (2006) Biogeochemical processes controlling the speciation and transport of arsenic within iron coated sands. Chem. Geol., v. 228, p. 16-32 https://doi.org/10.1016/j.chemgeo.2005.11.016
  9. Huebers, H.A. (1991) Iron. In: Merian, E. (Ed.) Metals and Their Compounds in the Environment: Occurrence, Analysis, and Biological Relevance. VCH, Weinheim, Germany, p.945-958
  10. Jones, C.A., Langner, H.W., Anderson, K., McDermott, T.R. and Inskeep, W.P. (2000) Rates of microbially mediatied arsenate reduction and solubilization. Soil. Sci. Soc. Am. J., v. 64, p. 600-608 https://doi.org/10.2136/sssaj2000.642600x
  11. Kim, J.Y., Davis, A. and Kim, K.W. (2003) Stabilization of available arsenic in highly contaminated mine tailings using iron. Environ. Sci. Technol., v. 37, p. 189-195 https://doi.org/10.1021/es020799+
  12. Kim, J.Y., Choi, Y.H., Kim, K.W., Ahn, J.S. and Kim, D.W. (2005) Removal of As(III) in contaminated groundwater using iron and manganese oxide-coated materials. Econ. Environ. Geol., v. 38, p. 571-577
  13. Le, X.C., Yalcin, S. and Ma, M. (2000) Speciation of submicrogram per liter levels of arsenic in water; On-site species separation integrated with sample collection. Environ. Sci. Technol., v. 4, p.2342-2347
  14. Lee, J.-U. and Chon, H.T. (2000) Bacterial effects on geochemical behavior of elements : An overview on recent geomicrobiological issues. Econ. Environ. Geol., v. 33, p3 353-365
  15. Lee, J.-U., Lee, S.-W., Kim, K.-W. and Yoon, C.-H. (2005) The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ. Geochem. Hlth., v. 27, p. 159-168 https://doi.org/10.1007/s10653-005-0133-4
  16. Lee, J.-U. and Park, H.S. (2005) Arsenic adsorption onto Pseudomonas aeruginosa cell surface. Econ. Environ. Geol., v. 38, p. 525-534
  17. Lee, J.-U., Lee, S.W., Kim, K.W., Lee, J.S. and Chon, H.T. (2006) Geomicrobiological effects on arsenic behavior in anaerobic sediment from abandoned gold mine area. J. Kor. Soc. Geosystem Eng., v. 43, p. 448-457
  18. Liu, Y.G., Zhou, M., Zeng, G.M., Li, X., Xu, W.H. and Fan, T. (2007) Effects of solids concentration on removal of heavy metals from mine tailings via bioleaching, J. Hazard. Mater., v. 141, p.202-208 https://doi.org/10.1016/j.jhazmat.2006.06.113
  19. Lovley, D.R., Phillips, E.J.P., Gorby, Y.A. and Kanda, E.R. (1991) Microbial reduction of uranium. Nature, v. 350, p.413-416 https://doi.org/10.1038/350413a0
  20. Macy, J.M., Michel, T.A. and Kirsch, D.G. (1989) Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol. Lett., v. 61, p. 195-198 https://doi.org/10.1111/j.1574-6968.1989.tb03577.x
  21. McLean, J.S., Lee, J.-U. and Beveridge, T.J. (2002) Interactions of bacteria and environmental metals, finegrained mineral development and bioremediation strategies. In: Huang, P.M., Bollag, J.-M. and Senesi, N. (Eds.) Interactions between Soil Particles and Microorganisms: Impact on the Terrestrial Ecosystem. John Wiley and Sons, Chichester, England, p. 227-261
  22. Nealson, K.H. and Stahl, D.A. (1997) Microorganisms and biogeochemical cycles: what can we learn from layered microbial communities? In: Banfield, J.F. and Nealson, K.H. (Eds.) Geomicrobiology: Interactions between Microbes and Minerals. pp. 5-34. Mineralogical Society of America, Washington, D.C
  23. Newman, D.K., Beveridge, T.J. and Morel, F.M.M. (1997) Precipitation of arsenic trisulfide by Desulfotomaculum auripigmentum, Appl. Environ. Microbiol., v.63, p. 2022-2028
  24. Nickson, R., McArthur, J., Burgess, W., Ahmed, K.M., Ravenscroft, P. and Rahman, M. (1998) Arsenic poisoning of Bangladesh groundwater. Nature, v. 395, p. 338 https://doi.org/10.1038/26387
  25. Nourbakhsh, M., Sag, Y., Ozer, D., Aksu, Z., Katsal, T. and Calgar, A. (1994) A comparative study of various biosorbents for removal of chromium(VI) ions from industrial wastewater. Process Biochem., v. 29, p. 1?5
  26. Oremland, R.S. and Stolz, J.F. (2003) The ecology of arsenic. Science, v. 300, p. 939-944 https://doi.org/10.1126/science.1081903
  27. Park, J.M., Lee, J.S., Lee, J.-U., Chon, H.T. and Jung, M.C. (2006) Microbial effects on geochemical behavior of arsenic in As-contaminated sediments. J. Geochem. Explor., v. 88, p. 134-138 https://doi.org/10.1016/j.gexplo.2005.08.026
  28. Sani, R.K., Peyton, B.M., Amonette, J.E. and Geesey, G.G. (2004) Reduction of uranium(VI) under sulfatereducing conditions in the presence of Fe(III)-(hydr)oxides. Geochim. Cosmochim. Acta., v. 68, p. 2639-2648 https://doi.org/10.1016/j.gca.2004.01.005
  29. Seidel, H., Loser, C., Zehnsdorf, A., Hoffmann, P. and Schmerold, R. (2004) Bioremediation process for sediments contaminated by heavy metals: Feasibility study on a pilot scale. Environ. Sci. Technol., v. 38, p. 1582-1588 https://doi.org/10.1021/es030075d
  30. Stookey, L.L. (1970) Ferrozine: a new spectrophotometric reagent for iron. Anal. Chem., v. 42, p. 779-781 https://doi.org/10.1021/ac60289a016
  31. Tebo, B.M. and Obraztsova, A.Y. (1998) Sulfate-reducing bacterium grows with Cr(VI), U(VI), Mn(IV), and Fe(III) as electron acceptors. FEMS Microbiol. Lett., v. 162, p. 193-198 https://doi.org/10.1111/j.1574-6968.1998.tb12998.x
  32. Thornton, I. (1983) Applied Environmental Geochemistry. Academic Press, London, 501p
  33. Torsvik, V., Ovreas, L. and Thingstad, T.F. (2002) Prokaryotic diversity - magnitude, dynamics, and controllong factors. Science, v. 296, p. 1064-1066 https://doi.org/10.1126/science.1071698
  34. Uhrie, J.L., Drever, J.I., Colberg, P.J.S. and Nesbitt, C.C. (1996) In situ immobilisation of heavy metals associated with uranium leach mines by bacterial sulphate reduction. Hydrometallurgy, v. 43, p. 231-239 https://doi.org/10.1016/0304-386X(95)00087-W
  35. US DOE (2007) Internet ref. http://www.ibl.gov/ERSP
  36. Williams, J.W. and Silver, S. (1984) Bacterial resistance and detoxification of heavy metals. Enz. Microb. Technol., v. 6, p. 530-537 https://doi.org/10.1016/0141-0229(84)90081-4