• Title/Summary/Keyword: 중공형 구형 탄소

Search Result 3, Processing Time 0.016 seconds

Support Effect of Nano Structured Carbon Nano Sphere and Nano Bowl of Carbon in the Phenol Hydroxylation and its Solvent Dependence (나노구조를 갖는 중공구형 및 중공반구형 다공성 탄소 담체가 페놀 수산화 반응에 미치는 영향 및 용매 의존도)

  • Kwon, Song Yi;Yoon, Songhun;Kim, Hui-Yeong;Lee, Jae Wook;Lee, Chul Wee
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.423-427
    • /
    • 2010
  • Carbon nano sphere(CNS) and nano bowl of carbon(NBC) containing 1.0 wt% copper were prepared by impregnation method and their catalytic activity was compared in the phenol hydroxylation with hydrogen peroxide in the presence of water and acetonitrile as a solvent, respectively. Cu content of catalysts was determined by EDS, and BET, pore volume, pore size and pore size distribution were compared. For both catalysts, phenol conversion, $H_2O_2$ efficiency and yield of catechol and hydroquinone were higher in the presence of water as a solvent than those in the presence of actonitrile. And catalytic activity such as phenol conversion and $H_2O_2$ efficiency of 1.0 Cu/CNS is about two times higher than that of 1.0 Cu/NBC in water solvent.

Electrochemical Properties of Using MnO2-HCS Composite for Supercapacitor (MnO2-HCS 복합체를 이용한 슈퍼커패시터의 전기화학적 특성)

  • Jin, En Mei;Jeong, Sang Mun
    • Clean Technology
    • /
    • v.24 no.3
    • /
    • pp.183-189
    • /
    • 2018
  • Hollow carbon spheres (HCS) and carbon spheres (CS) were prepared by a hydrothermal reaction and they were introduced as a substrate for the deposition of $MnO_2$ nanoparticles. The $MnO_2$ nanoparticles were deposited on the carbon surface by a chemical redox deposition method. After deposition, the $MnO_2$ nanoparticles were uniformally distributed on the carbon surface in a slit-shape, and sparse $MnO_2$ slits appeared on the HCS surface. The $MnO_2-HCS$ showed an initial specific capacitance of $164.1F\;g^{-1}$ at scan rate of $20mv\;s^{-1}$, and after 1,000 cycles, the specific capacitance was maintained to $141.3F\;g^{-1}$. The capacity retention of $MnO_2-HCS$ and $MnO_2-CS$ were calculated to 86% and 78% in the cycle performance test up to 1,000 cycles, respectively. $MnO_2-HCS$ showed a good cycle stability due to the mesoporous hollow structure which can cause a faster diffusion of the electrolyte and can easily adsorb and desorb $Na^+$ ions on the surface of the electrode.

Effect of Hollow Sphere Size on Heat Shield Properties of hollow TiO2/polyacrylate Composites (중공구의 크기에 의한 hollow TiO2/polyacrylate 복합체의 열차단 특성)

  • Kim, Jong Seok
    • Applied Chemistry for Engineering
    • /
    • v.32 no.6
    • /
    • pp.690-694
    • /
    • 2021
  • Carbon spheres (CS) were fabricated using glucose as a precursor in the hydrothermal method. Hollow TiO2 (H-TiO2) spheres with 200 nm, 500 nm, and 1,200 nm were synthesized by CS/TiO2 core-shell particles via a sol-gel and calcination method. H-TiO2 spheres with nano and micron sizes were characterized using FE-SEM, HR-TEM, and X-ray diffraction. The CIE color coordinate, solar reflectance, and heat shield temperatures of H-TiO2/polyacrylate (PA) composite film were investigated using a UV-Vis-NIR spectrometer and homemade heat insulation temperature measuring device. H-TiO2/PA composites exhibit excellent thermal insulation since the hollow structure filled with dry air has low thermal conductivity and near infrared light reflecting performance. The thermal insulation increased with increasing the hollow sphere (HS) size on H-TiO2/PA composites. The PA composite film mixed with H-TiO2 filled with 1200 nm HS reduced the heat shield temperature by 26 ℃ compared to that of the transparent glass counterpart.