• Title/Summary/Keyword: 중공재

Search Result 86, Processing Time 0.024 seconds

Construction Safety Evaluation of Local Bearing Strength of Hollow Core Slab (중공 슬래브의 국부지압강도에 대한 시공안전성 평가)

  • Hur, Moo-Won;Yoon, Jeong-Hwan;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.2
    • /
    • pp.8-15
    • /
    • 2018
  • Hollow Core Slab is a very efficient system that can reduce weight and its use has increased. Void slab is a concrete slab that has voids substituted with void material. Because of its saved volume of concrete, void slab can reduce weight of slabs. Also, it can't only save concrete but also can reduce carbon-emission. However, because of the unclear bearing strength at the part of void substituted with voiding material, several problems occur in constructing field. In this study, void slab including void material was built and local bearing strength test was carried out for 3 types of load(truck load, support load and Jack support load). As a result, bearing strength of void neck and upper void material is more than allowable load. And also, bearing strength of specimens with using deck and not using deck are also over allowable loads.

Shear Performance of Board-type Two-way Voided Slab (일체형 중공재의 중공부 내부형상에 따른 이방향 중공슬래브의 전단성능 평가)

  • Choi, Hyeon-Min;Park, Tae-Won;Paik, In-Kwan;Kim, Je-Sub;Han, Ju-Yeon
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.6
    • /
    • pp.651-659
    • /
    • 2015
  • Currently, social demands for long span building structures are increasing due to architectural planning purposes and economic efficiency. As a result, lighter board-type voiding materials were suggested. With the use of board-type voiding materials, a slab is able to become light weight and convenient. This process efficiently eliminates concrete where it is not required; considerably diminishing dead weight while maintaining the flexural strength of the slab. The reduction in concrete also allows for overall cost reductions and design flexibility. Also it can be ease with fixing the voided material that is composed of one body form. Although board-type voiding materials are ideal, the top and bottom concrete plates lack integrity. Because of this, test results show horizontal cracking towards the tops and bottoms of the concrete columns, or webs, connecting the slabs. The key to correcting this problem is to increase the shear strength. In order to increase the shear strength of the structure, horizontal shear area must increase. R70(100)-D-F has the largest horizontal shear area as it also shows stronger strength. As a result, shear strength ($V_{nh}$) is dependent on the horizontal shear area (N). $V_{nh}={\alpha}{\times}0.16{\sqrt{f_{ck}}}{\frac{{\pi}D^2}{4}}{\times}N({\alpha}=1.8125)$. The web columns have a shear span to depth ratio (a/d) that is less than 2; which classifies it as a deep beam. In this case, however, the shear strength of the deep beams may be as much as 2 to 3 times greater than that predicated conventional equations developed for members of normal proportions. As a result, ${\alpha}$ is suggested as an extra coefficient in the equation for shear strength ($V_{nh}$).

Evaluation of Punching Shear Safety of a Two-Way Void Plywood Slab System with Form (거푸집 패널이 부착된 2방향 중공슬래브의 뚫림 전단 안전성 평가)

  • Hur, Moo-Won;Woo, Hyung-Sik;Park, Jung-Min;Kang, Hyun-Wook;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.182-189
    • /
    • 2021
  • VPS(Void Plywood Slab System, VPS) has optimized the shape of the hollow material. In addition, it has a function to prevent the floating of the hollow material and the separation due to the working load. In this study, the punching shear capacity of flat plate was performed using Void Plywood Slab System with form work panel proposed in the previous study. As a result of the test, the strength of the VSPS specimen in which the hollow material was placed beyond 2.0 times the column width from the loading point was reduced by 9.4% compared to the reference specimen. However, the strength value was about 1.57 times higher than the design value suggested by KBC 2016. It was found that there was no change in stiffness compared to the reference specimen until shear failure occurred in the VSPS specimen in which the hollow material was placed. It can be seen that this experiment is being destroyed by shear as the flexural reinforcing bars are sufficiently reinforced.

Structural Performance of One-way Void Plywood Slab System with form work Pane (거푸집 패널이 부착된 1방향 중공슬래브의 구조 성능)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Hwang, Kyu-Seok;Yoon, Sung-Ho;Park, Tae-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.1
    • /
    • pp.7-15
    • /
    • 2021
  • In this study, we developed Void Plywood Slab (VPS) that improved the shape of existing hollow materials. Its performance was evaluated through one-way flexural and one-way shear tests using the developed VPS. As a result of the one-way flexural performance tests of VPS, the yield load value for FPS series(longitudinal direction specimens with hollow materials) was approximately 97.5% compared to FPS-00(without hollow materials) specimen. The tests showed that the yield load was not much different. In addition, FNS series(transverse direction specimens with hollow materials) also represented about 97% of FPS-00 specimen. The one-way flexural performance was shown to have little impact from void materials. Therefore, it is confirmed that the presented system is applicable to the VPS to the slab design. The results of the one-way shear performance tests of VPS showed that it was about 92% compared to the SS-00(without hollow materials) specimen. These results were somewhat insufficient for the SS-00 specimen. Shear strength equation is expressed as the sum of shear force by concrete and shear force by reinforcement. However, in the case of void slab, it is believed that the concrete section has been deleted by the void material. However, the strength of the structure applied to the shear design, as with the flexural design, is also applied to the design based on the yield load value.

Optimal strengthening in RC Hollow Slab Bridges using ${\mu}$-GA (${\mu}$-GA에 의한 RC 중공슬래브교의 최적보강)

  • Choi, Se-Hyu;Park, Kyung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.4
    • /
    • pp.169-178
    • /
    • 2010
  • In this study, the optimal strengthening by micro genetic algorithm(${\mu}$-GA) method is proposed for improvement of load-carrying capacity of RC hollow slab bridges using external prestressing. The Qeen-post type and King-post type are considered for the optimal strengthening. The type for optimal strengthening, deviator, areas of tendons and the number of anchor are calculated by ${\mu}$-GA. The objective function is constituted with dimensionless cost of tendon and steel for optimal strengthening. The constraints are formulated by design specification for bridges and anchors. The validity of this study is presented by analysis of the results after the optimal strengthening of the RC hollow slab bridge.

Safety Evaluation of Void Plywood Slab System with form Work Panel (거푸집 패널이 부착된 중공슬래브의 안전성 평가)

  • Hur, Moo-Won;Chae, Kyoung-Hun;Park, Tae-Won;Kang, Hyun-Wook;Park, Hyun-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.185-192
    • /
    • 2021
  • In this study, Full-scale hollow slab Mock-up with VPS(Void Plywood Slab System) was produced. Through Mock-up, the safety of the flat plate hollow slab against short-term sagging and long-term sagging is to be evaluated. The hollow rate of the mock-up specimen to which the hollow core slab was applied was designed to be 24%. When loading through concrete blocks, the most central part of the slab was deflection 8.88mm when loading. However, it shows a safe value compared to the reference value (ln/240=17.93mm) for short-term deflection. As a result of 3 months of measurement of the mock-up experiment, the deflection at the center of the slab increased by 6.792mm from the initial deflection. In addition, it was found that the reference value by the load used suggested by KBC2016 was satisfied.

An Analysis on Punching Shear of Two-way Void Slab (이방향 중공슬래브-기둥 접합부 뚫림전단성능의 해석적 평가)

  • Lee, Yung Eun;Ryu, Jaeho;Ju, Young Kyu;Kim, Sang Dae
    • 한국방재학회:학술대회논문집
    • /
    • 2011.02a
    • /
    • pp.32-32
    • /
    • 2011
  • 최근 국내외에서 친환경건축물에 관한 관심이 매우 높아짐으로 인해 콘크리트의 물량을 절감하여 이산화탄소량을 줄이는 중공슬래브는 다양한 형태로 세계적으로 개발이 되고 있는 추세이다. 특히 이방향 중공슬래브는 환경적인 측면에서 이방향 중공슬래브는 중공부 생성에 재생플라스틱을 활용하여 폐자원을 재사용하고, 콘크리트와 철근의 사용량 절감에 따른 화석에너지 및 이산화탄소 발생량을 감소한다는 장점이 있다. 또한 시스템 측면에서 이방향 중공슬래브는 기존의 철근콘크리트 플랫플레이트 바닥구조 시스템의 자중을 절감하여 구조체를 경량화 시키고, 이에 따라 장스팬 구현이 가능하며, 단열효과가 뛰어나다. 이와 같이 이방향 중공슬래브는 장점이 많지만 플랫플레이트 슬래브의 취약점인 뚫림전단 파괴에 주의해야 한다. 이에 본 연구에서는 선행으로 실시된 이방향 중공슬래브-기둥 접합부 뚫림전단 성능평가 실험을 바탕으로 하여 경량체가 이방향 중공슬래브-기둥 접합부 뚫림전단 성능에 미치는 영향을 살펴보기 위해 범용 유한요소해석 프로그램인 ABAQUS를 사용하여 경량체량 및 위치를 주요변수로 한 해석적인 변화를 검토하였다. 본 연구를 통해 경량체가 삽입된 이방향 중공슬래브의 뚫림전단 성능에 대해, 해석결과 경량체 량과 위치에 따라 최대 뚫림전단강도는 기준 실험체에 비해 74.3%, 73%의 강도저하를 나타내는 것으로 알 수 있었다. 이는 실험상의 강도저하 값인 84.1%, 56.4%와 다소 차이가 있으며, 해석에서 중공부 주위의 응력집중 현상이 제대로 반영되지 않은 것으로 판단된다. 또한 이방향 슬래브에 경량체를 삽입 할 경우 경량체가 시작하는 부분에서 응력이 급격히 감소하는 현상이 나타났으며, 이러한 급격한 응력감소는 기둥 주위 위험단면의 변화를 가져오는 것으로 추정된다. 즉, 위험단면의 변화는 기둥으로부터 경량체 사이의 거리에 따라 달라지며, 위험단면 내의 콘크리트 단면 손실은 뚫림전단 강도를 감소시킨다. 본 연구에서는 이방향 중공슬래브의 뚫림전단강도를 산정할 수 있는 근사식을 제안하였으며, 보다 정확한 이방향 중공슬래브의 뚫림전단강도의 산정식을 위해서는 위험단면의 변화와 콘크리트 단면손실로 인한 전단강도 저하의 관계에 대한 추가적인 연구가 필요하다.

  • PDF

Effects of fiber forms on thermal anisotropy in fibrous composites (섬유강화 복합재의 열이방성에 대한 섬유 형태적 영향)

  • Sim, Hwan-Bo;Lee, Bo-Seong
    • Korean Journal of Materials Research
    • /
    • v.5 no.2
    • /
    • pp.215-222
    • /
    • 1995
  • Anisotropic pitch-based C-type and hollow carbon fibers can obtain wider shear stresses during the spinning and induce higher molecular orientation than that of round along the fiber axis. These fibers reinforced unidirectional epoxy composites were prepared by hot-press moulding method and perpendicular and parallel thermal conductivities of the composites were measured by a steady-state meth od. In the case of round carbon fibers reinforced epoxy composites(H-CF/EP), thermal anisotropic factor showed nearly 50, while those of H-CF/EP and C-CF/EP showed about 130 and 118, respectively. As a result, both H-CF/EP and C-CF/EP had an excellent directional thermal conductivity to distribute heat, above 200 %.

  • PDF

유동상 코팅공정을 이용한 금속 중공체 제조

  • Kim, Yong-Jin;Lee, Jae-Uk;Yang, Sang-Seon
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.18.1-18.1
    • /
    • 2009
  • 금속 다공체는 자동차, 선박, 건축 등의 분야에서 구조물이나 충격흡수제 등으로 응용되고 있는데 이들은 일반 금속 구조물에 비해 가볍고 플라스틱에비해서는 강한 장점을 지닌다. 현재 사용되고 있는 대부분의 금속 다공체는 발포 주조공정으로 제조된 알루미늄으로서, 철계 합금에 비해 가벼운 장점을 갖지만 강도가 상당히 떨어지고 가격이 높은 단점을 가진다. 따라서 본 연구에서는 알루미늄 대신 철계 합금으로 다공체를 제조하고자 하였고 제조방법으로는 주조공정 대신 분말공정을선택하였다. 분말공정은 구형 스티로폼을 금속분말 슬러리로 코팅한 후 스티로폼을 제거하여 낱개의 금속중공체(Metallic Hollow Sphere)를 제조하고 이렇게 제조된 중공체를 뭉쳐 성형함으로써최종 형상의 다공체를 제조하는 방법이다. 이 방법으로 제조된 다공체는 주조공정으로 제조된 다공체보다높은 강도를 나타내며 낱개의 중공체는 성형공정을 거치지 않고 필터나 충진재 등의 새로운 용도로 활용될 수 있다.

  • PDF