DOI QR코드

DOI QR Code

중공 슬래브의 국부지압강도에 대한 시공안전성 평가

Construction Safety Evaluation of Local Bearing Strength of Hollow Core Slab

  • 투고 : 2017.08.08
  • 심사 : 2017.10.10
  • 발행 : 2018.03.01

초록

중공슬래브는 휨 성능에 영향을 미치지 않는 부분의 콘크리트 단면을 삭제하고 중공재로 치환함으로써 중공재 부피만큼 콘크리트가 줄어들어 자중 감소효과를 가져오는 장점이 있다. 또한, 콘크리트의 물량절감뿐 아니라 친환경적 측면에서 이산화탄소의 배출도 저감할 수 있어 효과적이다. 하지만, 중공재로 치환한 부분의 지압강도가 명확하지 현장 적용 시에 여러 가지 문제점이 발생한다. 이에 본 연구에서는 중공재가 포함된 중공슬래브를 제작하여 각 타입별(트럭 하중 적용 시, 동바리 하중 적용 시 및 잭 서포트 하중 적용 시)로 국부지압강도 실험을 수행하여 중공슬래브 국부 지압강도의 안전성을 평가하고자 한다. 트럭하중 적용 시, 동바리 하중 적용 시 및 잭 서포트 하중 적용 시의 실험결과 중공재 연결부위 및 중공재 상부의 지압강도는 모든 실험체에서 허용 하중 이상을 보유한 것으로 나타났다. 또한 데크 적용 유무에 따른 실험결과도 모두 허용 하중을 초과하여 안정성을 확보하는 것으로 나타났다.

Hollow Core Slab is a very efficient system that can reduce weight and its use has increased. Void slab is a concrete slab that has voids substituted with void material. Because of its saved volume of concrete, void slab can reduce weight of slabs. Also, it can't only save concrete but also can reduce carbon-emission. However, because of the unclear bearing strength at the part of void substituted with voiding material, several problems occur in constructing field. In this study, void slab including void material was built and local bearing strength test was carried out for 3 types of load(truck load, support load and Jack support load). As a result, bearing strength of void neck and upper void material is more than allowable load. And also, bearing strength of specimens with using deck and not using deck are also over allowable loads.

키워드

참고문헌

  1. Aldejohann, M. and Schnellenbach-Held, M. (2003), Investigations on the Shear Capacity of Biaxial Hollow Slabs-test Results and Evaluation, Darmstadt Concrete, 18, 1-11.
  2. Choi, H. M., Park, T. W., Paik, I, K., Kim, J. S., and Han, J. Y. (2015), Shear Performance of Board-type Two-way Voided Slab, Journal of the Korea Concrete Institute, 27(6), 651-659. https://doi.org/10.4334/JKCI.2015.27.6.651
  3. Chung, J. H., Choi, H. K., Lee, S. C., and Choi, C. S. (2014), Flexural Strength and Stiffness of Biaxial Hollow Slab with Donut Type Hollow Sphere, Journal of the Architectural Institute of Korea, 30(5), 3-11.
  4. Hur, M. W., Yoon, J. H., Hwang, K. S., Youn, S. H., and Park, T. W. (2017), Evaluation of Local Bearing strength of Hollow Core Slab, KCI, Spring 2017 Convention, 101-102.
  5. Joo, E. H., Kim, S. H., Jan, J. Y., Kim, H. G., and Park, H. G. (2011), Structural Performance Test on Installation Method of Viod Former for Void Slab using Deck Plate, Journal of the Architectural Institute of Korea, 27(3), 31-38.
  6. Kang, J. Y., Kim, H. G., Joo, E. H., Kim, S. M., Kim, H. S., and Shin, Y. S. (2011), Experimental Studies on the Effect of Construction Methods on Shear Strength of Hollow Core Slab, Proceedings of the Korea Concrete Institude, 23(1), 15-16.
  7. KBC, Korean Building and Commentary (2016), Architectural Institute of Korea.
  8. Kim, S. M., Jang, T. Y., and Kim, S. S. (2009), Structural Performance Tests of Two-way Void Slabs, Journal of the Architectural Institute of Korea, 25(8), 35-42.
  9. Kwang Jang Structrual Co. Ltd. (2016), Structural Performance Test of Rail type Viod-specimens, Kwang Jang Structrual Research Report.
  10. Lin, Y. (1994), Design of Prestressed Hollow Core Slabs with Reference to Web Shear Failure, Journal of Structural Engineering, ASCE, 120(9), 2675-2696. https://doi.org/10.1061/(ASCE)0733-9445(1994)120:9(2675)
  11. Martina, S. and Markus, A. (2005), Biaxial Hollow Core Slabs - Theory and Tests, Bentonwerk, Fertigteil Technic, section 50-59.
  12. Matti, P. and Heli, K. (1998), Shear Resistance of PHC Slabs Supported on Beams. I: Tests, Journal of Structural Engineering, ASCE, 124(9), 1050-1061. https://doi.org/10.1061/(ASCE)0733-9445(1998)124:9(1050)
  13. Ministry of Land, Infrastructure and Transport (Building Planning Division), Floor Impact Sound Insulation Structure Admit and Management Criteria in Apartment Houses Enforcement, Act No. 2013-889, 2014, 044-201-3370.
  14. Tamon, U. and Boonchai, S. (1991), Shear Strength of Precast Prestressed Hollow Slabs with Concrete Topping, ACI Structural Journal, 88(4), 402-410.