• Title/Summary/Keyword: 중공원형

Search Result 32, Processing Time 0.026 seconds

Flexural Behaviors of High Performance Hollow Core Slabs with Upper Strands (상부강선을 갖는 고성능 중공슬래브의 휨거동)

  • 김인규;박현석;유승룡
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.156-163
    • /
    • 2002
  • Hollow core slabs generally have not been used for a bridge or a parking slab in Korea. In this study, high performance hollow core slabs, which have been the most thick one in domestic are re-designed and examined for practical use. Flexural tests were performed on four 315mm deep hollow core slabs to investigate adaptability for high vehicle live loadings and composite action with topping concrete. The precast slabs were pre-tensioned with ten strands of 1/2 inch diameter at the lower of slab and four strands of 1/2 inch diameter at the upper of slab, and cast with 80 mm deep topping concrete. Tested hollow core slabs showed ductile failure behaviors which were conformed to the current Ultimate Strength Design Method for a span of 10m up to the live load of 1,000 kgf/㎡. The rectangular md round shear cotters which were used for the composite action between precast and topping concrete, developed sufficient strengths because cracking, even micro had not been developed at the end of slabs up to the pure flexural tensile failure.

Fire Resistance of Circular Internally Confined Hollow Reinforced Concrete Column (원형 내부 구속 중공 철근콘크리트 기둥의 내화 성능)

  • Won, Deok-Hee;Han, Taek-Hee;Lee, Gyu-Sei;Kang, Young-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.139-150
    • /
    • 2010
  • Reinforced-concrete (RC) columns are frequently designed and constructed. other types of columns includes composite types such as concrete-filled tube columns (CFT). Hollow RC columns may be effective in reducing both the self weight of columns and total amount of materials used. This is due to the fact that a hollow RC column possesses larger moment of inertia than that of solid RC columns of same cross sectional area. Despite the effectiveness the hollow RC column has not been popular because of its poor ductility performance. While the transverse reinforcements are effective in controlling the brittle failure of the outside concrete, they are not capable of resisting the failure of concrete of inner face which is in unconfined state of stress. To overcome these drawbacks, the internally confined hollow reinforced concrete (ICH RC), a new column type, was proposed in the previous researches. In this study, the fire resistance performance of the ICH RC columns was analyzed through a series of extensive heat transfer analyses using the nonlinear-material model program. Also, effect of factors such as the hollowness ratio, thickness of the concrete, and thickness of the internal tube on the fire resistance performance were extensively studied. Then the factors that enhance the fire-resistant performance of ICH RC were presented and analyzed.

Seismic Performance and Flexural Over-strength of Hollow Circular RC Column with Longitudinal Steel Ratio 2.017% (축방향철근비 2.017%인 중공 원형 RC 기둥의 내진성능과 휨 초과강도)

  • Ko, Seong-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Three small scale hollow circular reinforced concrete columns with aspect ratio 4.5 were tested under cyclic lateral load with constant axial load. Diameter of section is 400 mm, hollow diameter is 200 mm. The selected test variable is transverse steel ratio. Volumetric ratios of spirals of all the columns are 0.302~0.604% in the plastic hinge region. It corresponds to 45.9~91.8% of the minimum requirement of confining steel by Korean Bridge Design Specifications, which represent existing columns not designed by the current seismic design specifications or designed by seismic concept. The longitudinal steel ratio is 2.017%. The axial load ratio is 7%. This paper describes mainly crack behavior, load-displacement hysteresis loop, seismic performance such as equivalent damping ratio, residual displacement and effective stiffness and flexural over-strength of circular reinforced concrete bridge columns with respect to test variable. The regulation of flexural over-strength is adopted by Korea Bridge Design Specifications (Limited state design, 2012). The test results are compared with nominal strength, result of nonlinear moment-curvature analysis and the design specifications such as AASHTO LRFD and Korea Bridge Design Specifications(Limited state design).

Experimental Study on Shear Capacity of I-slab System Using Slim Precast Slab Deck (슬림 프리캐스트 슬래브 데크를 사용한 I-슬래브 시스템의 전단 성능에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.126-133
    • /
    • 2017
  • This paper presents the shear capacities of hollow slab with plate and octagonal pillar type hollow sphere. Recently, the interest in precast hollow slab system for buildings is growing up according to the demand for high quality control and the increase in slab thickness. A hollow slab system is widely known as one of the effective slab system which can reduce self-weight of slab. However, hollow slabs are vulnerable to the deterioration in the shear strength due to the decrease of concrete at slab web which resists shear. Especially, in case of precast hollow slabs, it has joint surface between precast concrete slab modules along transverse axis of slab, and shear failure, that is caused by cracks at joints, has to be prevented. Therefore, in this study, shear capacity of the I-slab system is evaluated by 3-points-supported shear test along the longitudinal and transverse axis of slab specimen. Test results showed that I-slab had enough shear strength compared to theoretical shear strength even if it included the joint surfaces.

A Study of Spray Characteristics for the Shape of Nozzle by Phase Doppler Analyzer (PDPA를 이용한 노즐의 형상에 따른 분무 특성의 연구)

  • Hwang, S. S.;Lee, H. S.;Kim, J.;Lee, B. G.;Kim, J. C.;Chun, U. H.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.5
    • /
    • pp.199-210
    • /
    • 1998
  • The skill that utilizes atomization of the liquid has been widely used in the field of industry and engineering. Though there are dozens of methods to make atomization, the pressure type injection nozzle is frequently used in washing of parts, pastourization and painting because it has relatively simple system. This study is to reveal the characteristics of atomizing formed by three different types of the pressure type injection nozzle. We measured velocity and diameter of droplet to compare and analyze characteristic of each nozzle. In case of velocity, atomization of hollow-cone nozzle is irregular than others and change of radial direction is especially large. Atomization of flat nozzle is nearly uniform. In case of diameter, atomization of hollow-cone nozzle is increased rapidly, as measurement point become more distant from the center of nozzle. Atomization of flat nozzle has the most fixed magnitude. Accordingly, full-cone nozzle can be used irrespective of the form of subject and hollow-cone nozzle is proper to the occasion to spray large and smooth subject. Also, flat nozzle is proper to the occasion to spray a part of subject and long groove.

  • PDF

Dynamic Test and Analysis of Multilevel Post-tensioned PSC Girder with Holed Web (중공부가 있는 다단계 긴장 PSC 거더의 동특성 실험 및 해석)

  • Park, Bong-Sik;Cho, Jae-Yeol;Han, Man-Yeob
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.11-12
    • /
    • 2010
  • PSC girder with holed web have several benefits. Most of all placing tendon anchorage in the holes can make prestressing forces be loaded stepwise. In addition it can reduce the self-weight of the beams and increase the span length of beams. And holed web might minimize the interference of view. In this study, a 50-meter long full scale multilevel post-tensioned PSC girder was fabricated and modal test was carried out. In order to obtain precise frequency response, vibration exciter was placed at the middle of the girder and excited with several frequencies. Natural frequency and damping ratio were evaluated from FFT and PSD using the obtained frequency response and compared with numerical analysis result.

  • PDF

Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier (준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구)

  • 정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

Structure Variation of Polypropylene Hollow Fiber Membrane with Operation Parameters in Stretching Process (연신 공정 조업변수에 따른 폴리프로필렌 중공사막의 구조 변화)

  • Lee Gyu-Ho;Kim Jin-Ho;Song Ki-Gook;Kim Sung-Soo
    • Polymer(Korea)
    • /
    • v.30 no.2
    • /
    • pp.175-181
    • /
    • 2006
  • Hybrid process of thermally-induced phase separation and stretching was developed for the preparation of microporous polypropylene hollow fiber membranes. Precursor for stretching was prepared by using soybean oil as a diluent and benzoic acid as a nucleating agent far the sphenlite control and it was stretched far the micrporous hollow fiber membrane. The effects of stretching ratio and deformation rate for stretching process were investigated. Increase of stretching ratio resulted in the greater pore size with nonuniform size distribution. Higher deformation rate also increaser the pore size with uniform size distribution. Stretching ratio was closely related with the orientation of polymer chain and increased the mechanical strength of the fiber. Increase of deformation rate had little effects on the orientation of crystalline phase, and decreased the orientation of amorphous phase which caused the decrease of tensile strength of the fiber and broke the micro-fibrils connecting spherulites to form a circular pore shape.

An Experimental Anlysis in Non-Circular Tube Extrusion Using the Effective Extrusion Ratio (비원형 중공 압출의 유효 압출비를 이용한 실험적 해석)

  • 한철호;김상화
    • Transactions of Materials Processing
    • /
    • v.8 no.5
    • /
    • pp.520-526
    • /
    • 1999
  • In this study a practical formula based on the experime수 랙 the estimation of load in the non-circular tube extrusion with the mandrel is proposed by using the effective extrusion ratio. Through some experiments for the several shaped sections, the coefficients of the empirical equation are determined by ticine as a model material at room temperature. The proposed empirical formula for the estimation of extrusion load will be applicable to the non-steady state as well as steady state for the extrusion of various shaped tubes from hollow billets.

  • PDF