Recently, many studies have been conducted to improve quality by applying machine learning models to semiconductor manufacturing process data. However, in the semiconductor manufacturing process, the ratio of good products is much higher than that of defective products, so the problem of data imbalance is serious in terms of machine learning. In addition, since the number of features of data used in machine learning is very large, it is very important to perform machine learning by extracting only important features from among them to increase accuracy and utilization. This study proposes an anomaly detection methodology that can learn excellently despite data imbalance and high-dimensional characteristics of semiconductor process data. The anomaly detection methodology applies the LIME algorithm after applying the SMOTE method and the RFECV method. The proposed methodology analyzes the classification result of the anomaly classification model, detects the cause of the anomaly, and derives a semiconductor process requiring action. The proposed methodology confirmed applicability and feasibility through application of cases.
With the release of numerous open driving datasets, the demand for domain adaptation in perception tasks has increased, particularly when transferring knowledge from rich datasets to novel domains. However, it is difficult to solve the change 1) in the sensor domain caused by heterogeneous LiDAR sensors and 2) in the environmental domain caused by different environmental factors. We overcome domain differences in the semi-supervised setting with 3-stage model parameter training. First, we pre-train the model with the source dataset with object scaling based on statistics of the object size. Then we fine-tine the partially frozen model weights with copy-and-paste augmentation. The 3D points in the box labels are copied from one scene and pasted to the other scenes. Finally, we use the knowledge distillation method to update the student network with a moving average from the teacher network along with a self-training method with pseudo labels. Test-Time Augmentation with varying z values is employed to predict the final results. Our method achieved 3rd place in ECCV 2022 workshop on the 3D Perception for Autonomous Driving challenge.
본 논문에서는 잡음 학생 모델 기반의 자가 학습을 활용한 음향 사건 검지 기법을 제안한다. 제안된 음향 사건 검지 모델은 두 단계로 구성된다. 첫 번째 단계에서는 잔차 합성곱 순환 신경망(Residual Convolutional Recurrent Neural Network, RCRNN)을 훈련하여 레이블이 지정되지 않은 비표기 데이터셋의 레이블 예측에 활용한다. 두 번째 단계에서는 세 가지 잡음 종류를 적용한 잡음 학생 모델을 자가학습 기법으로 반복하여 학습한다. 여기서 잡음 학생 모델은 SpecAugment, Mixup, 시간-주파수 이동을 활용한 특징 잡음, 드롭아웃을 활용한 모델 잡음, 그리고 semi-supervised loss function을 적용한 레이블 잡음을 활용하여 학습된다. 제안된 음향 사건 검지 모델의 성능은 Detection and Classification of Acoustic Scenes and Events(DCASE) 2020 Challenge Task 4의 validation set으로 평가하였다. DCASE 2020 챌린지 데이터셋의 baseline 및 최상위 랭크된 모델과 이벤트 단위 F1 점수 성능을 비교한 결과, 제안된 음향 사건 검지 모델이 단일 모델과 앙상블 모델에서 최상위 모델 대비 F1 점수를 각각 4.6 %와 3.4 % 향상시켰다.
최근 교육과정에서 학생들의 능력 평가는 단순 암기보다 학생들의 종합적인 사고력을 판단할 수 있는 서답형 문항을 늘리는 방향으로 변하고 있다. 그러나 서답형 문항의 경우 채점하는 데 시간과 비용이 많이 들고, 채점자의 주관에 따라 채점 결과의 일관성과 신뢰성을 보장하기 어렵다는 문제가 있다. 이런 점을 해결하기 위해 해외의 사례를 참고하여 국내에서도 서답형 문항에 자동채점 시스템을 적용하는 연구를 진행하고 있다. 본 논문에서는 2014년도에 개발된 '한국어 문장 수준 서답형 문항 자동채점 시스템'의 성능분석을 바탕으로 언어 처리 기능과 자동채점 성능을 개선한 2015년도 자동채점 시스템을 간략하게 소개하고, 각 자동채점 시스템의 성능을 비교 분석한다. 성능 분석 대상으로는 2014년도 국가수준 학업성취도평가의 서답형 문항을 사용했다. 실험 결과, 개선한 시스템의 평균 완전 일치도와 평균 정확률이 기존의 시스템보다 각각 9.4%p, 8.9%p 증가했다. 자동채점 시스템의 목적은 가능한 채점 시간을 단축하면서 채점 기준의 일관성과 신뢰성을 확보하는 데 있으므로, 보완한 2015년 자동채점 시스템의 성능이 향상되었다고 판단할 수 있다.
최근 교육과정에서 학생들의 능력 평가는 단순 암기보다 학생들의 종합적인 사고력을 판단할 수 있는 서답형 문항을 늘리는 방향으로 변하고 있다. 그러나 서답형 문항의 경우 채점하는 데 시간과 비용이 많이 들고, 채점자의 주관에 따라 채점 결과의 일관성과 신뢰성을 보장하기 어렵다는 문제가 있다. 이런 점을 해결하기 위해 해외의 사례를 참고하여 국내에서도 서답형 문항에 자동채점 시스템을 적용하는 연구를 진행하고 있다. 본 논문에서는 2014년도에 개발된 '한국어 문장 수준 서답형 문항 자동채점 시스템'의 성능분석을 바탕으로 언어 처리 기능과 자동채점 성능을 개선한 2015년도 자동채점 시스템을 간략하게 소개하고, 각 자동채점 시스템의 성능을 비교 분석한다. 성능 분석 대상으로는 2014년도 국가수준 학업성취도평가의 서답형 문항을 사용했다. 실험 결과, 개선한 시스템의 평균 완전 일치도와 평균 정확률이 기존의 시스템보다 각각 9.4%p, 8.9%p 증가했다. 자동채점 시스템의 목적은 가능한 채점 시간을 단축하면서 채점 기준의 일관성과 신뢰성을 확보하는 데 있으므로, 보완한 2015년 자동채점 시스템의 성능이 향상되었다고 판단할 수 있다.
여러 분야에서 이상탐지의 중요성이 강조됨에 따라, 다양한 데이터 유형과 이상치 유형에 대한 이상탐지 알고리즘이 개발되고 있다. 하지만 이상탐지 알고리즘의 성능은 주로 공개 데이터 세트에 대해 측정될 뿐 특정 유형의 이상치에서 나타나는 각 알고리즘의 성능은 확인되지 않고 있으므로, 분석 상황에 맞는 적절한 이상탐지 알고리즘 선택에 어려움이 있다. 이에 본 논문에서는 이상치의 유형과 다양한 데이터 속성을 먼저 파악하여, 이를 기반으로 적절한 이상탐지 알고리즘 선택에 도움을 줄 수 있는 방안을 제시하고자 한다. 구체적으로 본 연구에서는 지역, 전역, 종속성, 그리고 군집화의 총 4가지 이상치 유형에 대해 이상탐지 알고리즘의 성능을 비교하고, 추가 분석을 통해 라벨 수준, 데이터 개수, 그리고 차원 수가 성능에 미치는 영향을 확인한다. 실험 결과 이상치 유형에 따라 가장 우수한 성능을 나타내는 알고리즘이 다르게 나타나며, 이상치 유형에 대한 정보가 없는 경우에도 안정적인 성능을 보여주는 알고리즘을 확인했다. 또한 비지도 학습 기반 이상탐지 알고리즘의 성능이 지도 학습 및 준지도 학습 알고리즘의 성능보다 낮게 나타나는 유형을 확인하였다. 마지막으로 데이터 개수가 상대적으로 적거나 많을 때 대부분 알고리즘들의 성능이 이상치 유형에 더 강하게 영향을 받으며, 상대적으로 고차원일 경우 지역, 전역 이상치에서는 우수한 성능을 보였지만 군집화 이상치 유형에서 낮은 성능을 나타냄을 확인하였다.
본 글은 역사학, 그 중에서 한국사 연구에서 활용 가능한 빅데이터 분석 방법론을 모색하고, 이를 활용한 '디지털 역사학'의 가능성을 검토하는 것을 목적으로 한다. 방대한 '한국사 빅데이터'를 활용한 한국사 연구를 위해서는 기존의 질적분석 방법론뿐만 아니라 양적분석 방법론이 모색되어야 한다. 이를 위해서는 다양한 학문 분야와의 학제 간 융합연구가 요청된다. 본 글에서는 '한국사 빅데이터'를 활용한 다양한 융합연구의 출현을 고대하면서, 학제 간 융합연구의 연구방법론을 제안하고, 이를 적용한 연구의 한 사례를 소개하였다. 즉, 문장의 의미를 분석하는 텍스트 분석방법으로 '한국사 빅데이터'에서 원하는 정보를 추출한다면, 양적분석 방법론의 단점으로 지적되는 '행간의 의미읽기의 부재'를 점차 보완해 갈 수 있을 것이다. 그리고 이러한 방법론으로 구축한 데이터베이스를 바탕으로 준지도 학습(Semi-Supervised Learning) 방법론을 적용할 경우, 사료가 충분하지 않은 전근대 한국사의 역사적 인물과 사건들을 분석하는데 유용하게 활용될 것으로 기대된다. 분석 결과를 직관적으로 보여주는 시각화를 통해서도 평면적 연구에서 찾아내지 못한 역사적 사실들을 밝혀낼 수 있을 것이다. 이제 '디지털 역사학'의 서막이 오른 것이다.
최근 인터넷 기술의 발전과 함께 스마트 기기가 대중화됨에 따라 방대한 양의 텍스트 데이터가 쏟아져 나오고 있으며, 이러한 텍스트 데이터는 뉴스, 블로그, 소셜미디어 등 다양한 미디어 매체를 통해 생산 및 유통되고 있다. 이처럼 손쉽게 방대한 양의 정보를 획득할 수 있게 됨에 따라 보다 효율적으로 문서를 관리하기 위한 문서 분류의 필요성이 급증하였다. 문서 분류는 텍스트 문서를 둘 이상의 카테고리 혹은 클래스로 정의하여 분류하는 것을 의미하며, K-근접 이웃(K-Nearest Neighbor), 나이브 베이지안 알고리즘(Naïve Bayes Algorithm), SVM(Support Vector Machine), 의사결정나무(Decision Tree), 인공신경망(Artificial Neural Network) 등 다양한 기술들이 문서 분류에 활용되고 있다. 특히, 문서 분류는 문맥에 사용된 단어 및 문서 분류를 위해 추출된 형질에 따라 분류 모델의 성능이 달라질 뿐만 아니라, 문서 분류기 구축에 사용된 학습데이터의 질에 따라 문서 분류의 성능이 크게 좌우된다. 하지만 현실세계에서 사용되는 대부분의 데이터는 많은 노이즈(Noise)를 포함하고 있으며, 이러한 데이터의 학습을 통해 생성된 분류 모형은 노이즈의 정도에 따라 정확도 측면의 성능이 영향을 받게 된다. 이에 본 연구에서는 노이즈를 인위적으로 삽입하여 문서 분류기의 견고성을 강화하고 이를 통해 분류의 정확도를 향상시킬 수 있는 방안을 제안하고자 한다. 즉, 분류의 대상이 되는 원 문서와 전혀 다른 특징을 갖는 이질적인 데이터소스로부터 추출한 형질을 원 문서에 일종의 노이즈의 형태로 삽입하여 이질성 학습을 수행하고, 도출된 분류 규칙 중 문서 분류기의 정확도 향상에 기여하는 분류 규칙만을 추출하여 적용하는 방식의 규칙 선별 기반의 앙상블 준지도학습을 제안함으로써 문서 분류의 성능을 향상시키고자 한다.
현대에는 급속한 산업화와 인구 증가로 인해 도시들이 더욱 복잡해지고 있다. 특히 도심은 택지개발, 재건축, 철거 등으로 인해 빠르게 변화하는 지역에 해당한다. 따라서 자율주행에 필요한 정밀도로지도와 같은 다양한 목적을 위해 빠른 정보 갱신이 필요하다. 우리나라의 경우 기존 지도 제작 과정을 통해 지도를 제작하면 정확한 공간정보를 생성할 수 있으나 대상 지역이 넓은 경우 시간과 비용이 많이 든다는 한계가 있다. 지도 요소 중 하나인 도로는 인류 문명을 위한 많은 다양한 자원을 제공하는 중추이자 필수적인 수단에 해당한다. 따라서 도로 정보를 정확하고 신속하게 갱신하는 것이 중요하다. 이 목표를 달성하기 위해 본 연구는 Semantic Segmentation 알고리즘인 LinkNet, D-LinkNet 및 NL-LinkNet을 사용하여 광주광역시 도시철도 2호선 공사 현장을 촬영한 드론 정사영상에서 도로를 추출한 다음 성능이 가장 높은 모델에 하이퍼 파라미터 최적화를 적용하였다. 그 결과, 사전 훈련된 ResNet-34를 Encoder로 사용한 LinkNet 모델이 85.125 mIoU를 달성했다. 향후 연구 방향으로 최신 Semantic Segmentation 알고리즘 또는 준지도 학습 기반 Semantic Segmentation 기법을 사용하는 연구의 결과와의 비교 분석이 수행될 것이다. 본 연구의 결과는 기존 지도 갱신 프로세스의 속도를 개선하는 데 도움을 줄 수 있을 것으로 예상된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.