• Title/Summary/Keyword: 준정적 변형

Search Result 67, Processing Time 0.027 seconds

금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용성 연구

  • 유요한;양동열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.04b
    • /
    • pp.192-197
    • /
    • 1995
  • 소재의 손실을 최소한 줄이면서 원하는 형상의 제품을 가공하는 가장 기본적인 금속 가공 방법은 금형을 이용하는 금속 성형(metal forming)이다. 본 논문에서는 준정적 금속 성형 문제 해석 에대한 외연적 시간 적분 유한 요소법의 적용성을 평가 하기 위하여 변형모드가 복잡한 박판튜브 (thin-walled tube)의 좌굴문제를 해석하여 변형과정이 이론 및 실험결과와 비교적 잘 일치하는지 살펴보기로 한다. 또한 준정적 금속 성형 문제 해석에 외연적 시간 적분 유한 요소법을 사용할 때 계산 시간을 줄이기 위하여 많이 사용되는 가압속도 조절법(loading velocity control technique) 의 타당성을 평가하기 위하여 박판 튜브와 중실 실린더(solid cylinder)의 변형 속도에 따른 변형 모드의 변화를 비교 관찰하여 기하학적 형상에따른 가압속도 조절법의 적용 가능 여부를 분석하여 보겠다.

  • PDF

Application of the EPU Constitutive Equation to expanded Polypropylene under Dynamic Loading (동하중을 받는 발포 폴리프로필렌에 대한 EPU 구성 방정식 적용)

  • Jeong, Kwang Young;Kim, Byeong-Jun;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.135-140
    • /
    • 2014
  • A constitutive equation, which was suggested for describing the compressive deformation behaviour of the expanded polyurethane, was applied to the expanded polypropylene under dynamic loading. This equation consists of seven parameters, five of which are obtained by fitting the stress strain curve obtained from the quasi-static compression test at the lowest base strain rate. The remaining two parameters are able to be determined by fitting the curve from the compression test at different two stage strain rates. In order to check the eligibility of the equation at high strain rate, the impact test was performed and the results were compared to the analytical constitutive equation results for the expanded polypropylene with expansion ratios of 30 and 40 times, respectively.

Experimental Study for the Impact Characteristics of Expanded EPP/EPS Foams (발포 EPP/EPS의 충격특성에 관한 실험적 연구)

  • Kim, Han-Kook;Kim, Byeoung-Jun;Jeong, Kwang-Young;Cheon, Seong S.
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.343-348
    • /
    • 2013
  • In the present study, quasi-static tests and impact tests were performed for investigating the mechanical behaviour of EPP (Expanded polypropylene) and EPS (Expanded polystyrene). Four different density cylindrical type specimens were prepared for EPP and EPS and 0.001 $s^{-1}$ and 0.1 $s^{-1}$ of strain rate conditions for quasi-static tests and 100 J, 200 J and 300 J of incident energy conditions for the instrumented impact tests were considered.

Sensitivity Analysis of the Explicit Elasto-plastic Finite Element Method and Application to the Quasi-static Deformation (외연적 탄소성 유한요소해석에서의 민감도 해석과 준정적 변형에의 응용)

  • Kim, Se-Ho;Huh, Hoon
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.402-407
    • /
    • 2001
  • Sensitivity analysis scheme is developed in the elasto-plastic finite element method with explicit time integration using direct differentiation method. The direct differentiation is concerned with the time integration, constitutive relation, shell element with reduced integration and the contact scheme. Sensitivity analysis results are mainly examined with the highly nonlinear and quasi-static problem with the complicated contact condition. The result shows stable sensitivity especially in the sheet metal forming analysis.

  • PDF

A Constitutive Equation with Impulse-Momentum Theory for the Expanded Polypropylene (충격량-운동량 이론을 접목시킨 발포 폴리프로필렌의 구성방정식)

  • Kim, Byeong Kil;Cho, Jae Ung;Jeong, Kwang Young;Kim, Nam Hoon;Oh, Bum S.;Hahn, Youngwon;Cheon, Seong S.
    • Composites Research
    • /
    • v.29 no.3
    • /
    • pp.91-97
    • /
    • 2016
  • In this paper, impulse-momentum theory was coupled to a constitutive equation both for implementing quasi-static and impact characteristics of EPP (Expanded polypropylene). Also, parameters which have physical meanings were expressed as functions of relative density. Simultaneous nonlinear Newton-Raphson method was applied to find the proper values for parameters in the constitutive equation along with quasi-static test data. Results from the impulse-momentum theory coupled constitutive equation showed good agreement with experimental data and the potential to be applied to different material type polymeric foam.

A Constitutive Equation Including Strain Rate Effect for the Expanded Polypropylene (변형률 속도가 고려된 발포 폴리프로필렌의 구성방정식)

  • Kim, Han-Kook;Cheon, Seong S.
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.130-134
    • /
    • 2014
  • The purpose of this paper is to build DB in order to Propose new constitutive equations by redefining constitutive equations for Polyurethane presented by Jeong et al. [12] based on Quasi-static test and Impact test DB of Expanded polypropylene using cylindrical specimens with 4 different densities presentsd by Kim et al. [7] for EPP foam and combining the impulse-momentum theory.

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.

Real time compensation for quasistatic errors of a horizantal machining center (수평 머시닝 센터의 준 정적 오차의 실시간 보정)

  • Yang, Seung-Han
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.11
    • /
    • pp.154-162
    • /
    • 1997
  • A real time error compensation system was developed to improve the quasistatic volumetric accuracy of a machining center by using sensing, metrology, modeling, and computer control techniques. Including thermal errors, 32 error components are formulated in the time-space domain. Fifteen thermal sensors are used to characterize the temperature field of the machine. A compensation controller based on the IBM/PC has been linked with a CNC controller to compensate for machine errors in real time. The maximum linear displacement error in 4 body diagonals were reduced from 140 ${\mu}m$ to 34.5${\mu}m$ with this compensation system, and the spindle thermal drift in space was reduced from 147.3 ${\mu}m$ to 16.8 ${\mu}m$.

  • PDF

Application of the explicit time integration finite element method to quasi-static metal forming problems (금속 성형 공정의 준정적 변형 예측을 위한 외연적 시간 적분 유한 요소법의 적용에 대한 연구)

  • Yoo, Y.H.;Yang, D.Y.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.53-63
    • /
    • 1995
  • In the analysis of metal forming problems, the explicit time integration finite element method, which does not have convergence problems, is frequently used. The present work is to assess the applicability of the explicit time integration finite element method to quasi-static metal forming problems. Compressing analyses of thin-walled tubes and solid cylinders are performed with different loading velocities. The computed buckled profiles of thin walled tubes are compared with the theoretical and experimental ones and it is found that at sufficiently low loading velocity, the explicit time integration finite element method accurately predict quasi-static buckled profiles. When loading volocity is increased, the computed buckled profiles of thin-walled tubes are very sensitive to loading velocity however the computed profiles of solid cylinders are less sensitive to loading velocity. In orther words, the geometrically self-constrained specimens like solid cylinders are less sensitive to loading velocity than the geometrically unconstrained specimens like thin-walled tubes. As a result, it is found that the geometrically self-constrained problems which include the greater part of metal forming problems can be efficiently analyzed with loading velocity control technique.

  • PDF

Deformation and Fracture Behavior of Structural Bulk Amorphous Metal under Quasi-Static Compressive Loading (준정적 압축하에서 구조용 벌크 아몰퍼스 금속의 변형 및 파괴거동)

  • Shin, Hyung-Seop;Ko, Dong-Kyun;Oh, Sang-Yeob
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.10
    • /
    • pp.1630-1635
    • /
    • 2003
  • The deformation and fracture behaviors of a bulk amorphous metal, Zr-based one (Zr$\_$41.2/Ti$\_$13.8/Cu$\_$12.5/Ni$\_$10/Be$\_$22.5/: Vitreloy), were investigated over a strain rate range (7x10$\^$-4/~4 s$\^$-1/). The uniaxial compression test and the indentation test using 3mm-diameter WC balls were carried out under quasi-static loading conditions. As a result, at the uniaxial compressive state, the fracture stress of the material was very high (~1,700MPa) and the elastic strain limit was about 2%. The fracture strength showed a strain rate independent behavior up to 4 s$\^$-1/. Using indentation tests, the plastic deformation behavior of the Zr-based BAM up to a large strain value of 15% could be achieved, even though it was the deformation under locally constrained condition. The Meyer hardness of the Zr-based BAM measured by static indentation tests was about 5 GPa and it revealed negligible strain hardening behavior. At indented sites, the plastic indentation occurred forming a crater and well-developed multiple shear bands were generated around it along the direction of 45 degree when the indentation load exceeded 7kN. With increasing indentation load, shear bands became dense. The fracture surface of the specimen after uniaxial compressive tests showed vein-like pattern, typical morphology of many BAMs.