• Title/Summary/Keyword: 준설시공관리시스템

Search Result 3, Processing Time 0.015 seconds

Development of Hydrographic Dredging Surveying and Construction Management System Based on Grab Dredger (그래브 준설선에 의한 해상준설측량 및 시공관리시스템의 개발)

  • Lee, Jin Duk;Lee, Jae Bin;Kim, Hyun Ho
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.21 no.4
    • /
    • pp.3-12
    • /
    • 2013
  • In order to evaluate dredging results scientifically the system which can manage and estimate working process by monitoring dredging process in real-time needs to be constructed. We constructed real-time dredging management system for guidance of a dredging vessel and for survey of dredging construction. This system was designed to have functions of dredger location by GPS, ship direction measurement by GPS/Gyroscope combination, Grab position measurement, dredging depth measurement and correction. In addition, we developed the programs for controlling and operating the constructed system. The system could induce the vessel to accurate position and conduct dredging according to plan and the effectiveness of the system was evaluated through the results of application to actual dredging construction site.

Evaluation of Waterway Dredging Work using Spud Dredge Process Management System (스퍼드 준설선 공정관리시스템을 이용한 항로준설작업의 평가)

  • Lee Joong-Woo;Jeong Dae-Deuk;Cho Jueng-Eon;Kim Ju-Young;Oh Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.395-402
    • /
    • 2005
  • The most important point when we engage on waterway dredging work is supplying safe navigational passage to the vessels underway by narrowing dredge work area and removing submerged dangers. In order to meet this end it is necessary to use auxiliary equipment for shifting actively and mooring and adopt automation of dredging work by integrating information on real time position, dredging depth, and work information. The dredger with a spud control system in this study, by the way, is able to employed on continuous dredging work with the narrowest working area allowing wide and safe passages to vessels underway, by moving the dredger to the working zone with the spud controlled automatically. Furthermore, it has been improved definitely compared with the existing dredging process management system such that it shows the track of spud and working depth on the electronic navigation chart of window, together with the final outcome of dredging work. The test dredging work at the entrance of Busan North Port for system evaluation showed that actual working time available was twice of the one by the existing anchor system, and that it reduced $38\%$ of time for preparation work and one man power.

Evaluation of Waterway Dredging Work using Spud Control System (스퍼드제어시스템을 이용한 항로준설작업의 평가)

  • Lee, Joong-Woo;Jeong, Dae-Deuk;Cho, Jueng-Eon;Oh, Dong-Hoon;Keum, Dong-Ho
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.29 no.1
    • /
    • pp.263-271
    • /
    • 2005
  • The most important point when we engage on waterway dredging work is supplying safe navigational passage to the vessels underway by narrowing dredge work area and removing submerged dangers. In order to meet this end it is neccessary to use auxiliary equipment for shifting actively and mooring and adopt automation of dredging work by integrating information on real time position, dredging depth, and work information. The danger with a spud control system in this study, by the way, is able to employed on continuous dredging work with the narrowest working area allowing wide and safe passages to vessels underway, by moving the dredger to the working zone with the spud controlled automatically. Furthermore, it has been improved definitely compared with the existing dredging proccess management system such that it shows the track of spud and working depth on the electronic navigation chart of window, together with the final outcome of dredging work. The test dredging work at the entrance of Busan North Port for system evaluation showed that actual working time available was twice of the one by the existing anchor system, and that it reduced 38% of time for preparation work and one man power.

  • PDF