• Title/Summary/Keyword: 준선형 시스템

Search Result 187, Processing Time 0.028 seconds

Feature Ranking for Detection of Neuro-degeneration and Vascular Dementia in micro-Raman spectra of Platelet (특징 순위 방법을 이용한 혈소판 라만 스펙트럼에서 퇴행성 뇌신경질환과 혈관성 인지증 분류)

  • Park, Aa-Ron;Baek, Sung-June
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.48 no.4
    • /
    • pp.21-26
    • /
    • 2011
  • Feature ranking is useful to gain knowledge of data and identify relevant features. In this study, we proposed a use of feature ranking for classification of neuro-degeneration and vascular dementia in micro-Raman spectra of platelet. The entire region of the spectrum is divided into local region including several peaks, followed by Gaussian curve fitting method in the region to be modeled. Local minima select from the subregion and then remove the background based on the position by using interpolation method. After preprocessing steps, significant features were selected by feature ranking method to improve the classification accuracy and the computational complexity of classification system. PCA (principal component analysis) transform the selected features and the overall features that is used classification with the number of principal components. These were classified as MAP (maximum a posteriori) and it compared with classification result using overall features. In all experiments, the computational complexity of the classification system was remarkably reduced and the classification accuracy was partially increased. Particularly, the proposed method increased the classification accuracy in the experiment classifying the Parkinson's disease and normal with the average 1.7 %. From the result, it confirmed that proposed method could be efficiently used in the classification system of the neuro-degenerative disease and vascular dementia of platelet.

Characteristics of Tsunami Propagation through the Korean Straits and Statistical Description of Tsunami Wave Height (대한해협에서의 지진해일 전파특성과 지진해일고의 확률적 기술)

  • Cho, Yong-Jun;Lee, Jae-Il
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.18 no.4
    • /
    • pp.269-282
    • /
    • 2006
  • We numerically studied tsunami propagation characteristics through Korean Straits based on nonlinear shallow water equation, a robust wave driver of the near field tsunamis. Tsunamis are presumed to be generated by the earthquake in Tsuhima-Koto fault line. The magnitude of earthquake is chosen to be 7.5 on Richter scale, which corresponds to most plausible one around Korean peninsula. It turns out that it takes only 60 minutes for leading waves to cross Korean straits, which supports recently raised concerns at warning system might be malfunctioned due to the lack of evacuation time. We also numerically obtained the probability of tsunami inundation of various levels, usually referred as tsunami hazard, along southern coastal area of Korean Peninsula based on simple seismological and Kajiura (1963)'s hydrodynamic model due to tsunami-generative earthquake in Tsuhima-Koto fault line. Using observed data at Akita and Fukaura during Okushiri tsunami in 1993, we verified probabilistic model of tsunami height proposed in this study. We believe this inundation probability of various levels to give valuable information for the amendment of current building code of coastal disaster prevention system to tame tsunami attack.

Change of Refractive Index of Air in X-band due to Atmospheric Humidity, Temperature and Pressure measured by GB-SAR Interferometry (GB-SAR 간섭기법으로 측정된 X-밴드 대기 굴절률의 상대습도, 기온 및 기압에 따른 변화)

  • Lee, Jae-Hee;Lee, Hoon-Yol;Cho, Seong-Jun;Sung, Nak-Hoon;Kim, Kwang-Eun
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.2
    • /
    • pp.163-170
    • /
    • 2011
  • In this paper, we analyzed the phase change of 5-triangular trihedral comer reflectors by using X-band Ground-Based Synthetic Aperture Radar (GB-SAR) system. Each reflector was set as a stationary target at a different distance from the system. We obtained total 123 full-polarization images during 40 hours continuously at 20 minute interval. Results of SAR interferometric analysis showed phase changes of maximum 2 radians and followed similar pattern with atmospheric data. Through a GB-SAR phase formula that includes refractive index in the air, we performed regression analysis for refractive index as a function of atmospheric humidity, temperature and pressure. As a result, refractive index of air in X-band showed relatively high coefficient of determination with humidity and temperature (0.72 and 0.76 on average, respectively) but not so with pressure (0.34). The refractive index of air in X -band changed by 3.14\;{\times}\;10^{-5}$ during the measuring time with a humidity range of 50% ~ 90% and a temperature range of $-1^{\circ}C$ ~ $9^{\circ}C$. We expect that a total expression of refractive index of air including humidity, temperature and pressure can be calculated when more extensive data would be collected at various atmospheric conditions.

A Study on the PAPR Reduction Using Phase Rotation Method Applying Metaheuristic Algorithm (Metaheuristic 알고리즘을 적용한 위상회전 기법에 의한 PAPR 감소에 관한 연구)

  • Yoo, Sun-Yong;Park, Bee-Ho;Kim, Wan-Tae;Cho, Sung-Joon
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.5
    • /
    • pp.26-35
    • /
    • 2009
  • OFDM (Orthogonal Frequency Division Multiplexing) system is robust to frequency selective fading and narrowband interference in high-speed data communications. However, an OFDM signal consists of a number of independently modulated subcarriers and the superposition of these subcarriers causes a problem that can give a large PAPR(Peak-to-Average Power Ratio). Phase rotation method can reduce the PAPR without nonlinear distortion by multiplying phase weighting factors. But computational complexity of searching phase weighting factors is increased exponentially with the number of subblocks and considered phase factor. Therefore, a new method, which can reduce computational complexity and detect phase weighting factors efficiently, should be developed. In this paper, a modeling process is introduced, which apply metaheuristic algerian in phase rotation method and optimize in PTS (Particle Swarm Optimization) scheme. Proposed algorithm can solve the computational complexity and guarantee to reduce PAPR We analyzed the efficiency of the PAPR reduction through a simulation when we applied the proposed method to telecommunication systems.

A Research on Network Intrusion Detection based on Discrete Preprocessing Method and Convolution Neural Network (이산화 전처리 방식 및 컨볼루션 신경망을 활용한 네트워크 침입 탐지에 대한 연구)

  • Yoo, JiHoon;Min, Byeongjun;Kim, Sangsoo;Shin, Dongil;Shin, Dongkyoo
    • Journal of Internet Computing and Services
    • /
    • v.22 no.2
    • /
    • pp.29-39
    • /
    • 2021
  • As damages to individuals, private sectors, and businesses increase due to newly occurring cyber attacks, the underlying network security problem has emerged as a major problem in computer systems. Therefore, NIDS using machine learning and deep learning is being studied to improve the limitations that occur in the existing Network Intrusion Detection System. In this study, a deep learning-based NIDS model study is conducted using the Convolution Neural Network (CNN) algorithm. For the image classification-based CNN algorithm learning, a discrete algorithm for continuity variables was added in the preprocessing stage used previously, and the predicted variables were expressed in a linear relationship and converted into easy-to-interpret data. Finally, the network packet processed through the above process is mapped to a square matrix structure and converted into a pixel image. For the performance evaluation of the proposed model, NSL-KDD, a representative network packet data, was used, and accuracy, precision, recall, and f1-score were used as performance indicators. As a result of the experiment, the proposed model showed the highest performance with an accuracy of 85%, and the harmonic mean (F1-Score) of the R2L class with a small number of training samples was 71%, showing very good performance compared to other models.

A Study on the Development of Driving Risk Assessment Model for Autonomous Vehicles Using Fuzzy-AHP (퍼지 AHP를 이용한 자율주행차량의 운행 위험도 평가 모델 개발 연구)

  • Siwon Kim;Jaekyung Kwon;Jaeseong Hwang;Sangsoo Lee;Choul ki Lee
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.1
    • /
    • pp.192-207
    • /
    • 2023
  • Commercialization of level-4 (Lv.4) autonomous driving applications requires the definition of a safe road environment under which autonomous vehicles can operate safely. Thus, a risk assessment model is required to determine whether the operation of autonomous vehicles can provide safety to is sufficiently prepared for future real-life traffic problems. Although the risk factors of autonomous vehicles were selected and graded, the decision-making method was applied as qualitative data using a survey of experts in the field of autonomous driving due to the cause of the accident and difficulty in obtaining autonomous driving data. The fuzzy linguistic representation of decision-makers and the fuzzy analytic hierarchy process (AHP), which converts uncertainty into quantitative figures, were implemented to compensate for the AHP shortcomings of the multi-standard decision-making technique. Through the process of deriving the weights of the upper and lower attributes, the road alignment, which is a physical infrastructure, was analyzed as the most important risk factor in the operation risk of autonomous vehicles. In addition, the operation risk of autonomous vehicles was derived through the example of the risk of operating autonomous vehicles for the 5 areas to be evaluated.

Enhancement of Impact Resistance of Layered Steel Fiber Reinforced High Strength Concrete Beam (층 구조를 갖는 강섬유 보강 고강도 콘크리트 보의 충격저항성능 향상)

  • Yoo, Doo-Yeol;Min, Kyung-Hwan;Lee, Jin-Young;Yoon, Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.4
    • /
    • pp.369-379
    • /
    • 2012
  • The collapse of concrete structures by extreme loads such as impact, explosion, and blast from terrorist attacks causes severe property damage and human casualties. Concrete has excellent impact resistance to such extreme loads in comparison with other construction materials. Nevertheless, existing concrete structures designed without consideration of the impact or blast load with high strain rate are endangered by those unexpected extreme loads. In this study, to improve the impact resistance, the static and impact behaviors of concrete beams caste with steel fiber reinforced concrete (SFRC) with 0~1.5% (by volume) of 30 mm long hooked steel fibers were assessed. Test results indicated that the static and impact resistances, flexural strength, ductility, etc., were significantly increased when higher steel fiber volume fraction was applied. In the case of the layered concrete (LC) beams including greater steel fiber volume fraction in the tensile zone, the higher static and impact resistances were achieved than those of the normal steel fiber reinforced concrete beam with an equivalent steel fiber volume fraction. The impact test results were also compared with the analysis results obtained from the single degree of freedom (SDOF) system anaysis considering non-linear material behaviors of steel fiber reinforced concrete. The analysis results from SDOF system showed good agreement with the experimental maximum deflections.

Confirmation of the Dose Distribution by Stereotactic Radiosurgery Technique with a Multi-purpose Phantom (다용도 팬톰에서 정위방사선수술기법의 선량 정확도 확인)

  • Yoo Hyung Jun;Kim Il Han;Ha Sung Whan;Park Charn Il;Hur Sun Nyung;Kang Wee-Saing
    • Radiation Oncology Journal
    • /
    • v.20 no.2
    • /
    • pp.179-185
    • /
    • 2002
  • Purpose : For the purpose of quality assurance of self-developed stereotactic radiosurgery system, a multi-purpose phantom was fabricated, and accuracy of radiation dose distribution during radiosurgery was measured using this phantom. Materials and Methods : A farmer chamber, a 0.125 cc ion chamber and a diode detector were used for the dosimetry. Six MV x-ray from a linear accelerator (CL2100C, Varian) with stereotactic radiosurgery technique (Green Knife) was used, and multi-purpose phantom was attached to a stereotactic frame (Fisher type). Dosimetry was done by combinations of locations of the detectors in the phantom, fixed or arc beams, gantry angles $(20^{\circ}\~100^{\circ})$, and size of the circular tertiary collimators (inner diameters of $10\~40\;mm$). Results : The measurement error was less than $0.5\%$ by Farmer chamber, $0.5\%$ for 0.125 cc ion chamber, and less than $2\%$ for diode detector for the fixed beam, single arc beam, and 5-arc beam setup. Conclusion : We confirmed the accuracy of dose distribution with the radiosurgery system developed in our institute and the data from this study would be able to be effectively used for the improvement of quality assurance of stereotactic radiosurgery or fractionated stereotactic radiotherapy system.

Eyelid Detection Algorithm Based on Parabolic Hough Transform for Iris Recognition (홍채 인식을 위한 포물 허프 변환 기반 눈꺼풀 영역 검출 알고리즘)

  • Jang, Young-Kyoon;Kang, Byung-Jun;Park, Kang-Ryoung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.44 no.1
    • /
    • pp.94-104
    • /
    • 2007
  • Iris recognition is biometric technology which uses a unique iris pattern of user in order to identify person. In the captured iris image by conventional iris recognition camera, it is often the case with eyelid occlusion, which covers iris information. The eyelids are unnecessary information that causes bad recognition performance, so this paper proposes robust algorithm in order to detect eyelid. This research has following three advantages compared to previous works. First, we remove the detected eyelash and specular reflection by linear interpolation method because they act as noise factors when locating eyelid. Second, we detect the candidate points of eyelid by using mask in limited eyelid searching area, which is determined by searching the cross position of eyelid and the outer boundary of iris. And our proposed algorithm detects eyelid by using parabolic hough transform based on the detected candidate points. Third, there have been many researches to detect eyelid, but they did not consider the rotation of eyelid in an iris image. Whereas, we consider the rotation factor in parabolic hough transform to overcome such problem. We tested our algorithm with CASIA Database. As the experimental results, the detection accuracy were 90.82% and 96.47% in case of detecting upper and lower eyelid, respectively.

Integrity evaluation of rock bolt grouting using ultrasonic transmission technique (초음파 투과법을 이용한 록볼트 그라우팅의 건전도 평가)

  • Han, Shin-In;Lee, Jong-Sub;Lee, Yong-Jun;Nam, Seok-Woo;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.75-82
    • /
    • 2007
  • As one of the main support systems, rock bolts play a crucial role in the reinforcement of tunnels. Numerical and experimental studies using a transmission method of ultrasonic guided waves are performed to evaluate the integrity of rock bolts encapsulated by grouting paste. Numerical simulations using "DISPERSE" are carried out for the selection of the optimal experimental setup, i.e. non-destructive testing (NDT) system of the rock bolt. Based on results of the numerical simulation, the calculated frequency range for NDT testing is between 20kHz and 70kHz with the first longitudinal L(1) mode. Laboratory transmission tests are performed by attaching the piezo electric sensor at the tip of the rock bolt before embedding. Both of analytical and experimental results show that the amplitude of signals as well as the wave velocity increases with increase in the defect ratio of grouting paste. The defect in grouting paste means that the space around the rock bolt is not fully filled with the grouting paste. Experimental results also show that the increase of the wave velocity is more sensitive to the defect ratio increase than that of the amplitude. This study demonstrates that the transmission technique of ultrasonic guided waves may be a valuable tool in the evaluation of the rock bolt integrity.

  • PDF