• Title/Summary/Keyword: 주행로

Search Result 6,066, Processing Time 0.029 seconds

Automated Driving Aggressiveness for Traffic Management in Automated Driving Environments (자율주행기반 교통운영관리를 위한 ADA 개념 정립 및 적용 기법 개발)

  • LEE, Seolyoung;OH, Minsoo;OH, Cheol;JEONG, Eunbi
    • Journal of Korean Society of Transportation
    • /
    • v.36 no.1
    • /
    • pp.38-50
    • /
    • 2018
  • Emerging automated driving environments will lead to a mixed traffic flow depending on the interaction between automated vehicles (AVs) and manually driven vehicles (MVs) because the market penetration rate (MPR) of AVs will gradually increase over time. Understanding the characteristics of mixed traffic conditions, and developing a method to control both AV and MV maneuverings smoothly is a backbone of the traffic management in the era of automated driving. To facilitate smooth vehicle interactions, the maneuvering of AVs should be properly determined by various traffic and road conditions, which motivates this study. This study investigated whether the aggressiveness of AV maneuvering, defined as automated driving aggressiveness (ADA), affect the performance of mixed traffic flow. VISSIM microscopic simulation experiments were conducted to derive proper ADAs for satisfying both the traffic safety and the operational efficiency. Traffic conflict rates and average travel speeds were used as indicators for the performance of safety and operations. While conducting simulations, level of service(LOS) and market penetration rate(MPR) of AVs were also taken into considerations. Results implies that an effective guideline to manage the ADA under various traffic and road conditions needs to be developed from the perspective of traffic operations to optimize traffic performances.

Comparative Analysis of the Psychological State and Driving Safety for Driving within the Platoons of Trucks by Drivers Driving Performance (화물차 군집주행 간격에 따른 운전자의 운전수행능력별 심리상태 및 주행안전성 비교 연구)

  • Park, Hyun jin;Park, Jae beom;Lee, Ki young;Song, Chang jun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.6
    • /
    • pp.147-161
    • /
    • 2021
  • The purpose of this study was to investigate the psychological state and driving safety of drivers driving around the truck platoon driving. Using the driving simulator, the experimental environment was constructed with the situation of changing lanes to the platoon and driving within the platoon. We tried to qualitatively and quantitatively analyze the driver's psychological state and driving safety through simulation driving experiments. As a result, in the case of the older driver group, there were many cases where they judged themselves to be driving safely, even though they were driving dangerously in the actual lane change to the platoon or driving within the platoon. In particular, this group showed that the narrower the distance between vehicles, the greater the misrecognition. The results of this study are expected to be useful in deriving the optimum interval when the interval between platooning of trucks needs to be temporarily extended.

Control Strategy of Transit Signal Priority by S-BRT Driveway (S-BRT 주행로별 대중교통 우선신호 제어 전략)

  • Kim, Minji;Han, Yohee;Kim, Youngchan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.78-89
    • /
    • 2022
  • Super - Bus Rapid Transit (S-BRT), adding the advantages of urban railroads to BRT, has emerged to solve the problem of low speed and reliability of the existing BRT. Notably, the S-BRT driveway is classified into exclusive lanes and roads, as BRT, in the domestic guidelines. However, S-BRT and BRT have different operating goals and characteristics, so it is necessary to systematize the S-BRT driveway. Therefore, this study classified an S-BRT driveway into exclusive lane, shared lane with overtaking lane, and shared lane without overtaking lane based on domestic conditions. Subsequently, a control strategy for transit signal priority in each driveway was presented by the study based on the characteristics of the driveway to achieve the S-BRT target service level. Finally, the S-BRT target service level was almost achieved, and the travel speed was high and increased in the order respectively in the exclusive lane, shared lane with overtaking lane, and shared lane without overtaking lane in the study. Hence, it is important to operate a transit signal priority considering the characteristics of each driveway when operating the S-BRT. In essence, this study is expected to be used as a reference for driveway design and transit signal priority operation when introducing S-BRT in each local government in the future.

A Study on the Development of Urban Roads Convoy Driving Service and Effect Analysis (도시부 도로 호송주행(Convoy Driving) 서비스 개발 및 효과분석)

  • Son, Seung-neo;Lee, Ji-yeon;Cho, Yong-sung;Park, Ji-hyeok;So, Jae-hyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.51-63
    • /
    • 2022
  • Convoy driving is one of the technologies of multi-vehicle cooperation driving along with platoon driving. All over the world, research on vehicle control mechanisms to maintain vehicle formation during convoy driving convoy driving has been actively conducted and in Europe's Autonet 2030 project has developed and demonstrated convoy driving services for highways. But, even the concept of convoy driving is still insufficient in Korea. Therefore, in this study, the concept of convoy driving service was established and scenarios and communication messages for service application on urban roads were developed. And its effectiveness was verified through simulation analysis. As a result of comparing and analyzing individual vehicle cooperative driving and convoy driving for the blind spot support service and dilemma zone safety support service, which are representative V2I cooperative driving services on urban roads, the number of conflicts(indicator of traffic safety) and delays and stops(indicator of traffic efficiency) are significantly improved in convoy driving compared to individual vehicle cooperative driving.

Spatial Factors' Analysis of Affecting on Automated Driving Safety Using Spatial Information Analysis Based on Level 4 ODD Elements (Level 4 자율주행서비스 ODD 구성요소 기반 공간정보분석을 통한 자율주행의 안전성에 영향을 미치는 공간적 요인 분석)

  • Tagyoung Kim;Jooyoung Maeng;Kyeong-Pyo Kang;SangHoon Bae
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.22 no.5
    • /
    • pp.182-199
    • /
    • 2023
  • Since 2021, government departments have been promoting Automated Driving Technology Development and Innovation Project as national research and development(R&D) project. The automated vehicles and service technologies developed as part of these projects are planned to be subsequently provided to the public at the selected Living Lab City. Therefore, it is important to determine a spatial area and operation section that enables safe and stable automated driving, depending on the purpose and characteristics of the target service. In this study, the static Operational Design Domain(ODD) elements for Level 4 automated driving services were reclassified by reviewing previously published papers and related literature surveys and investigating field data. Spatial analysis techniques were used to consider the reclassified ODD elements for level 4 in the real area of level 3 automated driving services because it is important to reflect the spatial factors affecting safety related to real automated driving technologies and services. Consequently, a total of six driving mode changes(disengagement) were derived through spatial information analysis techniques, and the factors affecting the safety of automated driving were crosswalk, traffic light, intersection, bicycle road, pocket lane, caution sign, and median strip. This spatial factor analysis method is expected to be useful for determining special areas for the automated driving service.

자율주행 시대를 대비한 도로의 역할

  • Lee, Gi-Yeong
    • Information and Communications Magazine
    • /
    • v.33 no.4
    • /
    • pp.47-54
    • /
    • 2016
  • 자동차의 끝없는 진화에 따라 자율주행 시대가 우리에게 점점 더 현실화 되고 있다. 그러나 자동차의 진화만으로 자율주행 시대가 무난히 열릴 것인가? 필자는 도로에서 발생하는 다양한 돌발적 상황을 고려한다면, 도로의 협력이 필연적이라고 본다. 본고에서는 자율주행차 시대를 수용하기 위한 도로시스템의 진화 방향을 전망해 보고, 자율주행이 우리 사회에 미치는 상징적이고 광범위한 영향력에 대해 논해 보고자 한다.

CCD 카메라를 이용한 크레인 주행 레인 인식

  • 김정식;김민섭;이해규;노태정;안병규
    • ICROS
    • /
    • v.1 no.3
    • /
    • pp.5-12
    • /
    • 1995
  • 본 논문에서는 CCD 카메라를 사용하여 RTG 크레인의 주행 노면에 표시된 주행 레인을 인식하여 이를 영상 처리 알고리즘에 적용하여 RTG 크레인의 직진 주행에 필요한 크레인의 절대 위치 즉 주행 편차 거리 및 자세 편차각 등을 산출하는 방법을 제시하였다.

  • PDF

Methodology for Evaluating Cycling Environment using GPS-based Probe Bicycle Speed Data (GPS프로브 자전거 주행속도를 이용한 자전거 주행환경 평가방법론)

  • Hong, Du-Ho;Kil, Eun-Ji;Kim, Su-Jin;Joo, Shin-Hye;Oh, Cheol
    • International Journal of Highway Engineering
    • /
    • v.14 no.2
    • /
    • pp.73-81
    • /
    • 2012
  • The bicycle is an environment-friendly transport mode leading to a more sustainable transportation system. To innovatively increase the use of bicycle as a significant transport mode, bicycling-friendly roadway environment should be provided. From this perspective, the scientific and effective assessment of roadway environment in term of the bicyclist perception for safety and comfortability is of keen interest. This study develops a methodology for evaluation cycling environment using probe bicycles. A global positioning system(GPS) based speedometer was used to collect bicycle speed data. Cycling comfortability index(CCI) was derived for the purpose of evaluating cycling environment. The proposed CCI can be effectively used as an assessment tool in the field of bicycle transportation.

Per-Charge Range-Testing Method for Two-Wheeled Electric Vehicles (주행모드에 따른 전기이륜차의 1회충전주행거리 시험방법에 관한 연구)

  • Kil, Bum Soo;Kim, Gang Chul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.1
    • /
    • pp.37-44
    • /
    • 2014
  • For testing a two-wheeled vehicle's per-charge range, this study conducted road and chassis dynamometer driving tests. Three typical road routes within Daejeon Metropolitan City were selected for the road-driving test. In the case of CVS-40 mode driving tests using a chassis dynamometer, various road-loading conditions were set. In this study, two-wheeled electric vehicles' per charge range on the road was confirmed through testing, and the range and energy consumption efficiency depending on various chassis dynamometer road load settings were measured. Then, the results of the actual road driving tests were compared with those of the chassis dynamometer driving tests, and road load settings that yielded per-charge range testing results similar to those under actual road driving conditions in the chassis dynamometer experiments were studied.

Impact Analysis of Connected-Automated Driving Services on Urban Roads Using Micro-simulation (미시교통시뮬레이션 기반 도심도로 자율협력주행 서비스 효과 분석)

  • Lee, Ji-yeon;Son, Seung-neo;Park, Ji-hyeok;So, Jaehyun(Jason)
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.1
    • /
    • pp.91-104
    • /
    • 2022
  • The operational design domain (ODD) of autonomous vehicles needs to be expanded on highways and urban roads in light of the substantial commercialization of Level 3 autonomous vehicles. Therefore, this study developed a specific infrastructure autonomous vehicle-based cooperative driving service to ensure the driving safety of autonomous vehicles on city roads. The traffic operation efficiency, safety evaluation, and core evaluation indices for each service were selected and analyzed to study the effect of each service. The result of the analysis confirmed that the traffic operation efficiency and safety of autonomous vehicles were improved through the V2X communication-based autonomous cooperative driving service. On the whole, the significance of this study is in deriving the effect of the autonomous cooperative driving service based on V2X communication on urban roads with interrupting traffic flow.