• Title/Summary/Keyword: 주파수 차감

Search Result 26, Processing Time 0.018 seconds

Robust Speech Recognition Using Missing Data Theory (손실 데이터 이론을 이용한 강인한 음성 인식)

  • 김락용;조훈영;오영환
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.56-62
    • /
    • 2001
  • In this paper, we adopt a missing data theory to speech recognition. It can be used in order to maintain high performance of speech recognizer when the missing data occurs. In general, hidden Markov model (HMM) is used as a stochastic classifier for speech recognition task. Acoustic events are represented by continuous probability density function in continuous density HMM(CDHMM). The missing data theory has an advantage that can be easily applicable to this CDHMM. A marginalization method is used for processing missing data because it has small complexity and is easy to apply to automatic speech recognition (ASR). Also, a spectral subtraction is used for detecting missing data. If the difference between the energy of speech and that of background noise is below given threshold value, we determine that missing has occurred. We propose a new method that examines the reliability of detected missing data using voicing probability. The voicing probability is used to find voiced frames. It is used to process the missing data in voiced region that has more redundant information than consonants. The experimental results showed that our method improves performance than baseline system that uses spectral subtraction method only. In 452 words isolated word recognition experiment, the proposed method using the voicing probability reduced the average word error rate by 12% in a typical noise situation.

  • PDF

Adaptive Threshold for Speech Enhancement in Nonstationary Noisy Environments (비정상 잡음환경에서 음질향상을 위한 적응 임계 치 알고리즘)

  • Lee, Soo-Jeong;Kim, Sun-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.386-393
    • /
    • 2008
  • This paper proposes a new approach for speech enhancement in highly nonstationary noisy environments. The spectral subtraction (SS) is a well known technique for speech enhancement in stationary noisy environments. However, in real world, noise is mostly nonstationary. The proposed method uses an auto control parameter for an adaptive threshold to work well in highly nonstationary noisy environments. Especially, the auto control parameter is affected by a linear function associated with an a posteriori signal to noise ratio (SNR) according to the increase or the decrease of the noise level. The proposed algorithm is combined with spectral subtraction (SS) using a hangover scheme (HO) for speech enhancement. The performances of the proposed method are evaluated ITU-T P.835 signal distortion (SIG) and the segment signal to-noise ratio (SNR) in various and highly nonstationary noisy environments and is superior to that of conventional spectral subtraction (SS) using a hangover (HO) and SS using a minimum statistics (MS) methods.

Subspace Speech Enhancement Using Subband Whitening Filter (서브밴드 백색화 필터를 이용한 부공간 잡음 제거)

  • 김종욱;유창동
    • The Journal of the Acoustical Society of Korea
    • /
    • v.22 no.3
    • /
    • pp.169-174
    • /
    • 2003
  • A novel subspace speech enhancement using subband whitening filter is proposed. Previous subspace speech enhancement method either assumes additive white noise or uses whitening filter as a pre-processing for colored noise. The proposed method tries to minimize the signal distortion while reducing residual noise by processing the signal using subband whitening filter. By incorporating the notion of subband whitening filter, spectral resolution in Karhunen-Loeve(KL) domain is improved with the negligible additional computational load. The proposed method outperforms both the subspace method suggested by Ephraim and the spectral subtraction suggested by Boll in terms of segmental signal-to-noise ratio (SNRseg) and perceptual evaluation of speech quality (PESQ).

An Endpoint Detection Algorithm for Noise Speech using Band Energy (대역에너지를 이용한 잡음음성의 끝점검출 알고리즘)

  • Park Ki-Sang;Suk Su-Young;Jung Ho-Youl;Chung Hyun-Yeol
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.91-94
    • /
    • 2002
  • 음성인식 시스템의 실용화를 위해서 우선적으로 해결되어야 될 문제중 하나로 잡음환경하에서의 끝점검출을 들 수 있다. 잡음이 존재하지 않는 환경에서는 기존의 에너지 파라미터만으로도 어느정도 신뢰성있는 끝점 구간을 검출할 수 있으나 도심 소음과 같은 실제 잡음환경하에서는 대부분 좋지 않은 결과를 보인다. 본 논문에서는 도심환경의 배경잡음을 제거하는 방법으로 입력되는 음성에 대하여 주변소음에 의해 손상된 음성스펙트럼의 크기 성분만을 제거하는 전처리 기법인 Bark scale에 기반한 스펙트럼 차감법을 사용하고, 인간의 청각특성을 고려하여 음성의 주파수 대역을 3개의 대역으로 분리한 후, 대역별로 세밀한 에너지 문턱치값을 설정하여 음성의 끝점을 탐색하는 방법을 제안한다. 제안한 방법의 유효성을 확인하기 위해 실제 사무실 및 지하철역 등의 잡음환경하에서 녹음된 데이터베이스를 이용하여 끝점검출을 수행한 결과 기존의 에너지와 영교차율을 이용한 방법에 비해 평균 $46\%$의 오차율 감소와 대역에너지만을 사용한 경우에 비해 평균 $17\%$의 오차율 감소를 나타내어 제안한 방법의 유효성을 확인할 수 있었다.

  • PDF

Optimal Value Detection of Irregular RR Interval for Atrial Fibrillation Classification based on Linear Analysis (선형분석 기반의 심방세동 분류를 위한 불규칙 RR 간격의 최적값 검출)

  • Cho, Ik-Sung;Jeong, Jong-Hyeog;Cho, Young Chang;Kwon, Hyeog-Soong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.10
    • /
    • pp.2551-2561
    • /
    • 2014
  • Several algorithms have been developed to detect AFIB(Atrial Fibrillation) which either rely on the linear and frequency analysis. But they are more complex than time time domain algorithm and difficult to get the consistent rule of irregular RR interval rhythm. In this study, we propose algorithm for optimal value detection of irregular RR interval for AFIB classification based on linear analysis. For this purpose, we detected R wave, RR interval, from noise-free ECG signal through the preprocessing process and subtractive operation method. Also, we set scope for segment length and detected optimal value and then classified AFIB in realtime through liniar analysis such as absolute deviation and absolute difference. The performance of proposed algorithm for AFIB classification is evaluated by using MIT-BIH arrhythmia and AFIB database. The optimal value indicate ${\alpha}=0.75$, ${\beta}=1.4$, ${\gamma}=300ms$ in AFIB classification.

Noise-Biased Compensation of Minimum Statistics Method using a Nonlinear Function and A Priori Speech Absence Probability for Speech Enhancement (음질향상을 위해 비선형 함수와 사전 음성부재확률을 이용한 최소통계법의 잡음전력편의 보상방법)

  • Lee, Soo-Jeong;Lee, Gang-Seong;Kim, Sun-Hyob
    • The Journal of the Acoustical Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.77-83
    • /
    • 2009
  • This paper proposes a new noise-biased compensation of minimum statistics(MS) method using a nonlinear function and a priori speech absence probability(SAP) for speech enhancement in non-stationary noisy environments. The minimum statistics(MS) method is well known technique for noise power estimation in non-stationary noisy environments. It tends to bias the noise estimate below that of true noise level. The proposed method is combined with an adaptive parameter based on a sigmoid function and a priori speech absence probability (SAP) for biased compensation. Specifically. we apply the adaptive parameter according to the a posteriori SNR. In addition, when the a priori SAP equals unity, the adaptive biased compensation factor separately increases ${\delta}_{max}$ each frequency bin, and vice versa. We evaluate the estimation of noise power capability in highly non-stationary and various noise environments, the improvement in the segmental signal-to-noise ratio (SNR), and the Itakura-Saito Distortion Measure (ISDM) integrated into a spectral subtraction (SS). The results shows that our proposed method is superior to the conventional MS approach.