• Title/Summary/Keyword: 주주파수

Search Result 13, Processing Time 0.027 seconds

Analysis of Vibration Characteristics Caused by the Change of Detonation Pattern in the Blasting Site (발파 현장에서 기폭 패턴 변화에 따른 진동 특성 분석)

  • Jeong-Un Song
    • Explosives and Blasting
    • /
    • v.42 no.1
    • /
    • pp.12-22
    • /
    • 2024
  • In this study, the vibration characteristics according to the detonation pattern between rows in the blasting site were investigated by analyzing the vibration waveform, vibration velocity, and dominant frequency. As a result, it was found that the vibration waveform was changed according to the detonation pattern between rows in the blasting zone, and both the vibration velocity and dominant frequency was showed different condition.

A case study on the effect of blasting conditions on ground vibration (발파조건이 지반진동에 미치는 영향에 관한 사례 연구)

  • 고영선;김종우
    • Tunnel and Underground Space
    • /
    • v.9 no.1
    • /
    • pp.12-19
    • /
    • 1999
  • In this study, ground vibrations of a surface blasting for golf links and a tunnel blasting for highway construction were measured to investigate the effect of blasting conditions such as total charge and distance from blasting point. In surface blasting, site factor K and n were 74.1 and -1.37, respectively, which were analyzed by means of cube root scaled distance. The more were measuring distance, the higher were absolute value of K and n. Principal frequency was in range of 5~60 Hz in surface blasting, where that of 80 percent was in range of 10~30 Hz. On the other hand it was in range of 25~98 Hz in tunnel blasting, which showed higher than of surface blasting.

  • PDF

A Study on the Effect of Blast-Vibration on Curing Lining-Concrete (발파진동이 양생중인 라이닝 콘크리트에 미치는 영향에 관한 연구)

  • 신일재;이정인
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.6
    • /
    • pp.59-68
    • /
    • 2000
  • 현재까지 진동이 양생중인 콘크리트에 미치는 영향을 알아보기 위해 수행된 대부분의 연구에서는 콘크리트 공시체나 콘크리트 블록에 대해 100Hz 미만의 주주파수를 가지는 충격진동이나 진동테이블을 이용한 진동을 가한 후 콘크리트의 강도 변화를 평가하는 방법이 사용되었다. 이 연구에서는 발파진동이 양생중인 라이닝 콘크리트에 미치는 영향을 알아보기 우해 실험실 충격진동 시험과 터널 현장에서의 발파진동 시험을 수행하였다. 터널발파진동과 유사한 100~300Hz의 주주파수를 가지 충격진동을 각각 재령 3, 7, 12 시간에 다한 실험실 시험결과 2cm/sec의 진동속도는 모르타르 라이닝의 P파속도를 증가시키지만, 5 cm/sec, 10cm/sec의진동의 모르타르 라이닝의 P파 속도를 감소시킬 수 있는 것으로 나타났다. 양생기간동안 2.5 cm/sec 이하의 발파진동이 가해진 양생중인 라이닝 콘크리트는 진동을 가하지 않고 양생시킨 콘크리트 공시체에 비해 압축강도가 더 큰 값을 나타내었다. 재령 5시간에 콘크리트 라이닝애 대한 소규모 시험발파로 발파진동을 가한 콘크리트 시료와 진동을 가하지 않고 터널 내에서 양생시킨 공시체에 대해 압축강도를 비교한 결과 콘크리트의 강도 및 탄성파 속도를 저하시킬 수 있는 진동수준은 3~4cm/sec 인 것 으로 나타났다.로 나타났다.

  • PDF

Development of Noise-proof Facility Considered with Soundproofing Materials in a Tunnel Blasting (터널 발파에서 방음재질을 고려한 방음문 개발에 관한 연구)

  • Jeoung, Jae-Hyeung;Won, Yeon-Ho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.3
    • /
    • pp.27-35
    • /
    • 2011
  • This study investigated a sound reduction degree by each soundproofing materials and the sound pressure level of a main frequency range to develop soundproofing facilities installed for reducing sound in a tunnel blasting. The frequency range and sound pressure level of soundproofing materials(eg. sand and water etc.) mainly used at a working spot were measured using the experimental apparatus considered with blasting situation. The full scale pilot test was also carried out using developed soundproofing facilities in this study. And the performance of developed soundproofing facilities was analyzed. As a result, the developed soundproofing facilities using water in sound insulation materials could reduce about 10dB(A) of blasting noise in compare with the existing soundproofing facilities.

Frequency Analysis According to Priming Location (기폭위치에 따른 주파수 분석)

  • Son, Seok-Bum;Kang, Choo-Won;Noh, Young-Bae;Go, Chin-Surk
    • Explosives and Blasting
    • /
    • v.29 no.2
    • /
    • pp.51-58
    • /
    • 2011
  • Frequency is a very important factor in discussing the effect on facilities such as precision instruments and therefore, in evaluating the effect of blasting vibration, it is necessary to identity information on frequency in addition to maximum amplitude of vibration. This study collected rock samples in gneiss area to perform an indoor rock test and to identify frequency of blasting vibration according to priming location, performed of single hole test blasting. Then the study decided dominant frequency through FFT and analysed changes according to priming locations. Consequently frequency range according to priming location is indicated top priming is distributed high range, bottom priming is distributed high range, middle priming is distributed evenly range. Frequency trend according to priming location is indicated distance increase with frequency discrease in top priming, distance increase with frequency increase in bottom priming.

Analysis of Ground Vibration due to Demolition (구조물 발파해체로 인한 지반진동의 해석 연구)

  • Kim, Seung-Kon;Park, Hoon;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.12 no.3
    • /
    • pp.210-219
    • /
    • 2002
  • In the ground vibration due to demolition blasting vibration and impact vibration of collapsed structure are separated. In this paper, model structures were collapsed by blasting with different charge locations. Ground vibrations were measured and separated as blasting and impact vibrations by waveform and dominant frequency. Vibration characteristics of different charge locations were examined.

Detection of Gastric Contraction in Electrogastrography: Spectrum Analysis and Vector Analysis (위전도에서의 위수축 측정방법 : 주파수영역분석 및 벡터분석)

  • Kim, In-Young;Han, Wan-Taek
    • Journal of Biomedical Engineering Research
    • /
    • v.18 no.3
    • /
    • pp.273-283
    • /
    • 1997
  • Electrogastrography(EGG), the cutaneous recording of the myoelectrical activity of the stomach using surface electrodes, is attactive due to its non-invasiveness. Despite many attempts made over the decades, analysis of surface EGG has not led to identification of contraction-related electrical response activity of the stomach that would help the clinician to diagnose motility disorders of the stomach. We propose feasible methods to detect the gastric contraction by spectrum analysis and vector analysis of the surface EGG signal. A running spectral analysis(RSA) based on the fast Fourier transform (FFT) was applied to the filtered EGG signal. The powers of dominant frequency and its harmonics were compared with gastric contraction signals such as the strain gauge signal from the gastric serosa in dog or the antropyloric pressure in human. And we also carried out vector analysis of the filtered EGG signals obtained from three paired electrodes. The amplitude and direction of the calculated EGG vector were analyzed and compared with the gastric contraction signals. From the spectrum analysis, we found that the increase of the power of the first harmonic of the dominant frequency was highly correlated with the gastric contraction. And from the vector analysis of the EGG signal, we found a typical change of the amplitude and direction of the EGG vector, which can indicate occurrences of the gastric contraction.

  • PDF

An Adaptive Frequency Hopping Method in the Bluetooth Baseband (블루투스 베이스밴드에서의 적응 주파수 호핑 방식)

  • Moon Sangook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.2
    • /
    • pp.237-241
    • /
    • 2005
  • In Bluetooth version 1.0, the frequency hopping algorithm was such that there was one piconet, using a specific frequency, resolving the frequency depending on the part of the digits of the device clock and the Bluetooth address. Basic pattern was a kind of a round-robin using 79 frequencies in the ISM band. At this point, a problem occurs if there were more than two devices using the same frequency within specific range. In this paper, we proposed a software-based adaptive frequency hopping method so that more than two wireless devices can stay connected without frequency crash. Suggested method was implemented with HDL(Hardware Description Language) and automatically synthesized and laid out. Implemented adaptive frequency hopping circuit operated well in 24MHz correctly.

Multi-Frequency Crosswell Seismic Experiment (다중 주파수 송신원에 의한 공대공 탄성파 실험)

  • Lee, Doo-Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.4
    • /
    • pp.223-228
    • /
    • 2007
  • First arrival signals of multi-frequency crosswell seismic data, acquired in wells drilled in granitic rock, were analyzed to investigate the characteristic behavior of the signals at the shear zones. Dominant frequencies of the sources were; 10-, 20-, 40-, 56-, and 80 kHz. No obvious changes in the waveform at the shear zones were found; however, at the shear zones, some degree of velocity reductions were observed in the signals of all frequency sources. The 80 kHz signal is slightly faster than 10 kHz signal in the survey region, and the velocity difference between the two signals were found largest at the shear zone where the permeability measured greatest in the survey interval.

Analysis of Blasting Vibration at the Irregular Layered Structure Ground (불규칙한 층상구조 지반에서의 발파진동 분석)

  • Kim, Seung Hyun;Lee, Dong Wook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.36 no.5
    • /
    • pp.891-901
    • /
    • 2016
  • By comparing test blasting data experimented in three layered-structure polymorphic grounds to a geological profile, influence of blast vibration with respect to uncontrollable ground characteristics was analyzed. Inefficient blast have been performed without sufficient verifications or confirmations because insufficiencies with regard to experiments and data of blasting engineering on the layered structures to be irregularly repeated clinker layer consisted of volcanic clastic zones. It is difficult to quantify N values of clinkers within test blasting region because they have diverse ranges, or coverages. An absolute value of attenuation coefficient N in a field, estimated by blasting vibration predictive equation (SRSD), are lesser than criteria of a design instruction, meaning that vibrations caused by blast can spread far away, and the vibrational characteristics of blasting test No.1, indicating relatively small values, inferred by the geological profile, pressures of gas by the explosion may be lost into a widely distributed clinker layers by penetrating holes resulted from blast into vicinity of clinker layers located in bottom of soft rock layers at the moment of blast. As a result, amounts of spalling rocks are decreased by almost half. Also, ranges of primary frequencies in the fields are identified as similar to those of natural frequency of typical structures.