• Title/Summary/Keyword: 주조형 복합화약

Search Result 5, Processing Time 0.018 seconds

Structural Support of Aluminum Honeycomb on Cast PBX (알루미늄 허니컴(HC) 구조재 적용 주조형 복합화약)

  • Seonghan Kim;Keundeuk Lee;Haneul Park;Mingu Han
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.222-229
    • /
    • 2024
  • As the operating condition for the penetrating missile has been more advanced, the survivability of main charge has been strongly required when the warhead impacts the target. Lots of efforts to desensitize explosives such as the development of insensitive molecular explosives or optimizing plastic-bonded explosives(PBX) systems has been made to enhance the survivability of main charge. However, these efforts face their limits as the weapon system require higher performance. Herein, we suggest a new strategy to secure the survivability of main charge. We applied structurally supportable aluminum honeycomb(HC) structure to cast PBX. The aluminum HC structure reinforces the mechanical strength of cast PBX and helps it to withstand external pressure without the reaction like detonation. In this study, impact resistance character, shock sensitivity and internal blast performance of PBXs reinforced with HC structure were investigated according to the application of aluminum HC structure. The newly suggested aluminum HC structure applied to cast PBX was proved to be a promising manufacturing method available for high-tech weapon systems.

A study on friability test to assess the mechanical impact sensitivity of insensitive explosives (Friability 시험에 의한 둔감화약의 기계적 충격 감도 평가 연구)

  • 박정수;박희덕;김성호;이정관
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.20-29
    • /
    • 2001
  • We recently developed a friability test procedure, which will be used as one of substance tests for Extremely Insensitive Detonating Substances(EIDSs) in Test Series 7 of the United Nations. This test was intended to assess the susceptibility of insensitive explosives to the break-up as high strain rate and subsequent ignition characteristics of the deformed material. We designed an air gun system using the hydro code simulation. The projectile velocities of the gun were in good agreement with those predicted by the hydro code with an inert material. Three different types of explosives, melt castable Comp B, castable plastic bonded explosives(PBXs), and pressable PBXs were tested during the development of the test procedure. Two tastable PBXs, i.e. DXD-09 and DXD-10, which are currently under development as candidate formulations of EIDS were classified as EIDS, since test results with these formulations were far better than the criterion of the UN Test Series 7.

  • PDF

The Research of Commercial HTPB Polymer Binder Characteristics for Castable Plastic Bonded Explosive (주조형 복합화약용 HTPB 고분자 바인더의 상용모델 특성연구)

  • Lee, Seung-Jae;Kim, Jae-Woo;Park, Jong-Wan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.441-444
    • /
    • 2011
  • Type A and Type B and are commercial HTPB models, which are very popular prepolymer for polyurethane binder family. So the study has been performed on the physical, chemical characteristic of HTPB and viscosity, mechanical property of PBX-A applying to HTPB. But We excluded the Type A from Appication test, because of law Hydroxyl value. And in the case of Type B, Type B-1, 2 has mechanical disadvatage to apply to HTPB in the process comparing with B-3. It seems to make no problem if we change equivalence ratio or curing condition within standards. But if we are to apply process condition like R-45HT(US-sample), it would be essential to apply HTPB with higher Hydroxyl Value and hydroxyl Functionality.

  • PDF

Analysis of Blast Wave of Explosives by the Scaling Law (축척법에 의한 화약 폭풍과 분석)

  • Park, Jung-Su;Kim, Sung-Ho;Lee, Keun-Deuk;Lee, Jai-Min
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.8 no.4 s.23
    • /
    • pp.120-129
    • /
    • 2005
  • To analyze a blast effect of developed explosives, three different kinds of aluminized tastable explosives and melted cast explosive TNT were used. Conventional explosive TNT was used as a reference. Each tested explosive charge of 340mm diameter spherical type was initiated at the charge center with DXD-65(${\sim}750g$) booster and RP-87 EBW detonator. Thirteen piezo type pressure sensors were located at a range from 4 to 50m away from the charge. From the blast wave profiles, we calculated a peak blast pressure and impulse of the explosion. The calculated pressures and in pulses were converted to TNT Equivalent Weight(TEW) factor by the scaling ]aw method. The average TEW factors based on the blast pressure of TX-01, TX-02, TX-03, TX-04 were 1.298, 1.05, 1.266, 1.274 and the average TEW factors based on impulse were 1.504, 1.686, 1.640, 1.679. From the results, we concluded that TEW factors based on blast pressure and based on impulse of aluminized explosives were superior to TNT. This results are owing to the high contents of aluminum in formulations.

Estimation of Aging Properties for Plastic Bonded Explosives Using AKTS Thermokinetic Software (AKTS Software를 이용한 주조형 복합화약의 노화 특성 예측)

  • Kwon, Kuktae;Lee, Sojung;Kim, Seunghee
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.1
    • /
    • pp.66-71
    • /
    • 2018
  • The evaluation of the shelf-life of energetic materials is important. However, there are several difficulties associated with the evaluation. First, aging experiments require a considerable amount of time. Second, treating highly energetic materials is dangerous. For these reasons, many evaluation methods have been developed. Because most energetic materials decompose with the evolution of heat, it is important to analyze the thermal properties of energetic materials in order to understand decomposition and aging properties. In this paper, we describe the estimation of thermal aging properties and develop a kinetic model from spot data set of mechanical properties and estimate aging properties for mechanical results.