• Title/Summary/Keyword: 주익

Search Result 64, Processing Time 0.018 seconds

Protection Design and Lightning Zone Analysis for Unmanned Aerial Vehicle with Composite Wings (복합재 주익 무인항공기의 낙뢰보호 설계와 피격영역 해석)

  • Hee-chae Woo;Yong-Tae Kim
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.3
    • /
    • pp.302-312
    • /
    • 2023
  • This paper describes the analysis of lightning strike zoning, the indirect lightning data simulation and the protection design for lightning indirect effects of equipment by lightning strike for unmanned aircraft consisting of composite wings. Through the analysis of lightning strike zoning according to the external shape of unmanned aerial vehicles, the structure areas that should be protected during lightning strike is derived, and the protection requirements of lightning indirect effects for flight critical equipments and equipment that must be operated upon lightning strike was derived. Lightning protection levels according to the location of mounting equipment and surrounding structure materials for each equipment was derived, and the protection design of the unmanned aerial vehicle with composite structures was also proposed from direct effect of lightning. Later, the lightning protection technology will be verified by the ground test of lightning direct and indirect effects.

A Study on Longitudinal Flight Dynamics of a QTW UAV (QTW 무인항공기의 종축 비행동역학에 관한 연구)

  • Jung, Ji In;Hong, Sung Tae;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.1
    • /
    • pp.31-39
    • /
    • 2013
  • A Quad Tilt Wing UAV is a new concept hybrid UAV having the advantages of both fixed-wing and rotary-wing aircraft. This paper presents longitudinal flight dynamic characteristics of a Quad Tilt Wing UAV. The designed Quad Tilt Wing UAV is a configuration of a tandem wing type aircraft with an actuating motor and propeller mounted at each wing. Momentum theory is used to calculate the thrust, and nonlinear modeling is performed considering lift and drag generated by slip stream effect of propellers. Also, Force and moment variation at each tilting angle is considered. Static trim on longitudinal axis is analyzed via numerical simulation. Componentwise force contribution was analyzed at each trim mode. Dynamic characteristics were evaluated through eigenvalue analysis for a linear model at each flight mode. It is verified that longitudinal dynamic characteristics are changing from unstable to stable state by continuous transition of dominant poles.

Analytical Study for the Safety Enhancement of the Bird Strike to Small Aircraft using a Crushable Foam (Crushable Foam을 이용한 소형항공기 조류충돌 안전성 향상에 관한 해석적 연구)

  • Park, Ill-Kyung;Choi, Ik-Hyun;Ahn, Seok-Min;Lee, Sang-Jong;Yeom, Chan-Hong
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.1-10
    • /
    • 2008
  • The Bird strike to small aircraft has not been an issue because of it's low speed and usage as a private aircraft. So, the compliance of the bird strike regulation is limited to large fixed-wing aircraft such as the commuter category in FAR Part 23 and the civil aircraft in FAR Part 25, generally. However, the forecast of dramatic increasing of VLJ(Very Light Jet) and (light time of general aviation due to Air-taxi for the point to point transportation, would rise up the need of bird strike regulations and a safety enhancement in normal and utility categorized aircraft. In this study, the safety enhancement concept using a crushable foam for the bird strike to small aircraft wing leading edge, and the evaluation about the safety of the bird strike to small aircraft are proposed using the explicit finite element analysis.

  • PDF

Structure Test and Vibration Analysis for Small Aircraft (소형항공기(반디호) 몰드의 구조시험 및 진동해석)

  • Jung, Do-Hee;Kim, Jin-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.692-697
    • /
    • 2005
  • A canard type aircraft, which has good wing stall and stall/spin proof characteristics, is being developed. The previous first and second prototypes, having full depth core sandwich type wing and fixed landing gear, was built for test flights. Newly developing Firefly will be equipped with retractable landing gear and conventional foam core sandwich laminate for wing and fuselage. For manufacturing, composite material process has been studied including coupon tests. Wet lay-up onto foam core with glass fabric using lay-up mold has been chosen, and composite material parts are cured under room temperature and atmospheric pressure condition. In general, molded parts show so good surface smoothness and standardized quality that are best in mass production. In this study, we present the mold technology and development status for small aircraft firefly.

  • PDF

A Numerical Analysis on Transient Fuel temperatures in a Military Aircraft under Non-operating Ground Static Condition (지상 정적 상태에서의 항공기내 연료온도변화에 대한 수치해석)

  • 김영준;김창녕
    • Journal of Energy Engineering
    • /
    • v.12 no.1
    • /
    • pp.11-16
    • /
    • 2003
  • A numerical study was performed on the transient fuel temperatures of a military aircraft stationed under non-operating static condition. Numerical calculation was peformed by an explicit method using modified Dufort-Frankel scheme. It was assumed that the non-operating aircraft is subjected to repeated daily cycles of air temperature with the solar radiation and wind speed corresponding to the 1 % hot day ambient condition. And, the aircraft was assumed to be in turbulent flow. The convective heat transfer coefficient for turbulent flow on the flat plate suggested by Eckert was employed to calculate heat transfer between the aircraft surface and the ambience. The energy conservation equation on fuel was used as governing equation for this analysis. As a result of this analysis, the wing tank temperature showed the highest temperature and the largest rate of temperature changes among fuel tanks. The results of this analysis could be used as initial foe] temperatures for analysis of the transient fuel temperatures in various flight missions. Also, this analysis method could be used to analysis and design of an aircraft thermal energy management system.

Adaptive Neural Network Controller Design for a Blended-Wing UAV with Complex Damage (전익형 무인항공기의 복합손상을 고려한 적응형 신경망 제어기 설계 연구)

  • Kim, Kijoon;Ahn, Jongmin;Kim, Seungkeun;Suk, Jinyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.141-149
    • /
    • 2018
  • This paper presents a neural network controller design for complex damage to a blended wing Unmanned Aerial Vehicle(UAV): partial loss of main wing and vertical tail. Longitudinal/lateral axis instability and the change of flight dynamics is investigated via numerical simulation. Based on this, neural network based adaptive controller combined with two types of feedback linearization are designed in order to compensate for the complex damage. Performance of two kinds of dynamic inversion controllers is analyzed against complex damage. According to the structure of the dynamic inversion controller, the performance difference is confirmed in normal situation and under damaged situation. Numerical simulation verifies that the instability from the complex damage of the UAV can be stabilized via the proposed adaptive controller.

Forced Oscillation Wind Tunnel Test of a 50m Length Airship (50M급 비행선의 강제진동 풍동시험)

  • Chang,Byeong-Hee;Lee,Yung-Gyo;Ok,Ho-Nam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.17-22
    • /
    • 2003
  • An airship is statically unstable, because it has no wing, relatively small tails and a large hull. Hence, an accurate prediction of dynamic stability is critical. In this study, dynamic stability data of the 50m Length Airship were acquired through forced oscillation wind tunnel tests. The tests were done in Birhle Applied Research Inc's Lange Amplitude Multi-Purpose(BAR LAMP) Facility located in Germany. The tests were composed with 16 static runs and 26 dynamic runs. As results, it is obtained that dynamic characteristics of the airship depend on the sideslip angle, the angular rate and its direction as well as the angle of attack. Generally, three directional moments have damping, but the normal force, the side force, and the cross-derivatives are unstable. The dynamic derivatives are not sensitive to the control surfaces, but nonlinear to the sideslip angle.

Initial Climb Mission Analysis of a Solar HALE UAV (태양광 고고도 장기체공 무인기의 초기 상승 임무 분석)

  • Shin, Kyo-Sic;Hwang, Ho-Yon;Ahn, Jon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.6
    • /
    • pp.468-477
    • /
    • 2014
  • In this research, how a solar powered HALE (high altitude long endurance) UAV (Unmanned Aerial Vehicle) can climb and reach mission altitude, 18km, starting from the ground using only solar energy. A glider type aircraft was assumed as a baseline configuration which has wing area of $35.98m^2$ and aspect ratio of 25. Configuration parameters, lift and drag coefficients were calculated using OpenVSP and XFLR5 that are NASA open source programs, and climb flights were predicted through energy balance between available energy from solar power and energy necessary for a climb flight. Minimum time climb flight was obtained by minimizing flight velocities at each altitude and total time and total energy consumption to reach the mission altitude were predicted for different take off time. Also, aircraft moving distances due to westerly wind and flight speed were calculated.

Investigation of Ice Impacts on Aluminum Skin Structure (알루미늄 표피 구조의 Ice 충돌 특성에 관한 연구)

  • Park, Gyu Cheol;Myeong, No Sin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.5
    • /
    • pp.110-116
    • /
    • 2003
  • With the growth of aircraft performance and needs for light aircraft, the problems associated with hail impacts on aircraft during flights and grounding become and important issue. These hail encounters can cause severe damages to aircraft and result in major concerns in safety and cost. Since nearly all external components of the commercial and military aircraft-in particular, the nose section and the leading edge of the wing and tail-are subject to damages, much effort has been put into understanding of this problem. However, most of the previous studies have focused on the composite components and few results have been reported for the metallic components. In this paper, we study the ice impacts on the aluminum component with the finite element analysis method utilizing commercial non-linear dynamics solver LS-DYNA. The results are compared with the experimental data and a simple measure of the ice impact effects is proposed.

Fatigue Analysis to Determine the Repair Limit for the Damaged Fastener Hole of Aging Aircraft(P-3CK) (노후항공기(P-3CK) 패스너 홀 손상 수리 한계 설정을 위한 피로해석)

  • Kim, Young-Jin;Kim, Hyeung-Geun;Kim, Chang-Young;Chang, Joong-Jin;Lee, Mal-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.12
    • /
    • pp.959-966
    • /
    • 2013
  • In this study, based on P-3CK project using aging aircraft without any design information, the structural assessments of fastener holes to repair the short edge distance defects are investigated. For this purpose, the nacelle longeron which has many defects is selected and then conservative stress is calculated by performing the static analysis of 1.5ED, 1.8ED, 2.0ED defects of longeron fastener holes. This result applies to TWIST standard load spectrum to generate flight load spectrum. Then the crack growth analysis is performed by using flight load spectrum. Through this, the validity of a repaired fastener hole is evaluated. Finally, the standard of repair and the period of maintenance for a defected fastener hole are established.