• Title/Summary/Keyword: 주식매매

Search Result 71, Processing Time 0.027 seconds

Relationship between Stock Market & Housing Market Trends and Liquidity (주식시장과 주택시장의 동향 및 유동성과의 관계)

  • Choi, Jeong-Il
    • Journal of Digital Convergence
    • /
    • v.19 no.6
    • /
    • pp.133-141
    • /
    • 2021
  • Governments of each country are actively implementing fiscal expansion policies to recover the real economy after Corona 19. In Korea, the stock market and housing market are greatly affected as liquidity in the market increases due to the implementation of disaster subsidies and welfare policies. The purpose of this study is to analyze the relationship between stock market and housing market trends and liquidity. Data were collected by the Bank of Korea and Kookmin Bank. The analysis period is from January 2000 to December 2020, and monthly data are used. For empirical analysis, the rate of change from the same month of the previous year was calculated for each variable, and numerical analysis, index analysis, and model analysis were performed. As a result of the analysis, it was found that the stock index showed a positive(+) relationship with the house price, while a negative(-) relationship with M2. Previous studies have suggested that, in general, an increase in liquidity affects the stock market and the housing market, and inflation also rises. In this study, it was found that the stock market and the housing market had an effect on each other. However, it was investigated that liquidity showed an inverse relationship with the stock market and had no relationship with the housing market. Through this, this study estimated that there is a time difference in the relationship between liquidity and the stock market & housing market.

The Effects of Sidecar on Index Arbitrage Trading and Non-index Arbitrage Trading:Evidence from the Korean Stock Market (한국주식시장에서 사이드카의 역할과 재설계: 차익거래와 비차익거래에 미치는 효과를 중심으로)

  • Park, Jong-Won;Eom, Yun-Sung;Chang, Uk
    • The Korean Journal of Financial Management
    • /
    • v.24 no.3
    • /
    • pp.91-131
    • /
    • 2007
  • In the paper, the effects of sidecar on index arbitrage trading and non-index arbitrage trading in the Korean stock market are examined. The analyses of return, volatility, and liquidity dynamics illustrate that there are no distinct differences for index arbitrage group and non-index arbitrage group surrounding the sidecar events. For further analysis, we construct pseudo-sidecar sample and analyse the effects of the actual sidecar and pseudo-sidecar on arbitrage sample and non-index arbitrage sample. The result of analysis using pseudo-sidecar shows that the differences between index arbitrage group and non-index arbitrage group are larger in pseudo-sidecar sample than in actual sidecar sample. This means that former results can be explained by temporary order clustering in one side before and after the event. Sidecar has little effect on non-index arbitrage group, however, it has relatively large effect on arbitrage group. These results imply that it needs to redesign the sidecar system of the Korean stock market which applies for all program trading including arbitrage and non-index arbitrage trading.

  • PDF

A Study on the transformation of real-time visual information of bar charts into complementary sound information (봉차트의 실시간 시각정보를 보완적 음향정보로 변환하는 방법에 관한 연구)

  • Goo, Bon-Cheol
    • 한국HCI학회:학술대회논문집
    • /
    • 2006.02a
    • /
    • pp.717-722
    • /
    • 2006
  • 경제지표, 주식시세, 전자상거래 등 시각적으로 제공되는 정보 중에 정확한 숫자가 중요한 정보인 경우도 있지만 2 차 정보로서 변화의 추세나 패턴이 중요한 경우도 있다. 주식을 포함한 유가증권이나 선물거래의 경우 주로 미국식 봉차트를 사용하는데 개인투자자가 늘고 있는 우리나라 실정으로 볼때 식음을 전폐하고 전광판에 매달리는 문제점이 지적되고 있고, 전문투자자들도 시각정보를 놓치지 않기 위해 일상 업무에 소홀해지는 경우가 많다. 이러한 경우 음향정보도 함께 제공한다면 인간은 다양한 감각기관을 가지고 있기 때문에 시각정보를 주로 이용하다가도 잠시 휴식을 취하거나 다른 용무가 있을 때 청각정보를 보완적으로 사용하여 스트레스를 줄일 수 있고 명철한 판단력을 유지할 수 있으며, 경우에 따라서는 음향정보가 상황판단을 위해 더욱 효과적일 수도 있을 것으로 본다. 음향정보가 시각정보를 대체하기 보다는 2 차 정보로서 상호보완성이 목적이라면 정확한 숫자의 표현보다는 거래패턴 등을 음악적으로 표현하여 음악 감상의 기능까지 갖춘다면 시각정보와는 차별화된 음향정보의 독자성을 찾을 수 있다. 간혹 종목별 등락을 읽어주거나 중요한 매매시점에 신호음을 내는 청각적인 방법이 사용되기도 하지만 상당히 제한적이고 단순한 상태이다. 그러므로 본 연구의 진정한 개발목적은 정보성 이외에 예술적 표현을 융합하는 것이며, 시각장애인이나 네트워크 환경이 열악한 사람들도 주식투자에 있어서 평등성을 보장하여 건전한 투자문화를 형성하기 위함이다. 실시간 거래정보를 음악적으로 표현하여 업무를 보면서도 들려오는 음악을 통해 거래상황을 파악할 수 있는 연구방법으로 거래빈도는 음의 빠르기로, 거래가는 음의 높낮이, 거래량은 음의 세기, 종목은 악기의 음색으로 표현하였으며, 컴퓨터에 내장된 사운드카드를 통해 소리를 들을 수 있도록 MIDI 데이터로 변환하였다. 통계정보는 주로 한국증권선물거래소(KRX: The Korea Exchange)에서 발췌하였으며, 시뮬레이션을 위한 프로그래밍 언어로는 Cycling74 의 Max/MSP 를 사용하였다.

  • PDF

포트폴리오 수익률 예측력에 관한 연구 -다요인모형과 단일요인모형 비교-

  • Ju, Sang-Ryong;Jeong, Mun-Gyeong
    • The Korean Journal of Financial Studies
    • /
    • v.10 no.1
    • /
    • pp.145-170
    • /
    • 2004
  • Roll의 비판 이후 실행된 많은 국내외 연구결과 CAPM으로 설명이 되지 않는 이례 현상(Anomaly)들이 발견되고 있다. 이례 현상들은 다 요인 모형(multi-factor model)과 같은 추가 위험 요인이론, 표본차이이론, 과잉반응 및 특성이론들로 설명되고 있고 이러한 이례 현상들은 재무관리의 지속적인 관심사인 미래의 주가수익률 예측과 밀접한 관계에 있다. 본 연구에서는 이례 현상들이 주가수익률에 미치는 영향을 알아보기 써하여 Haugen and Baker(1996)의 다 요인 및 수익률 추정 방법론을 국내 증권시장에 적용한 다 요인 모형과 $\beta$, 기업규모, PBR, 과거 1년 주가 수익률에 의한 단일 요인 모형을 이용하여 개별 기업의 포트폴리오 구성기준을 결정하고 이 기준에 의거하여 월별로 편입 주식들을 재조정한 포트폴리오들의 년간 누적 실제수익률 예측력을 비교 분석한 결과 다음과 같은 결과를 얻었다. 첫째, 다 요인모형의 경우 기대수익률이 높은 주식으로 구성된 포트폴리오가 기대수익률이 낮은 주식으로 구성된 포트폴리오보다 실제 년간 수익률이 높게 나타난 반면, $\beta$, 기업규모, PBR, 과거 1년 주가 수익률의 요인에 의한 단일 모형을 적용한 포트폴리오는 이들 순위와 실제 수익률간에는 상관성이 높지 않게 나타나 다요인 모형이 주가 수익률 예측력에 있어서 단일요인 모형보다 우수한 것으로 판단된다. 단일모형 중에서는 PBR을 이용한 포트폴리오가 $\beta$ 단일모형보다 좋은 주가수익률 예측력을 보여 주었다. 둘째, 주가 수익률을 결정하는 유의성있는 요인들은 당기순이익의 증감, 당해연도의 당기순이익의 분포, 자산증가율, 매매 유동성, 매출액 변동, 거래량 추세, 기업크기(시가총액), 과거 1개월간의 주가수익률, 자기자본증가율등으로 나타났다.

  • PDF

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Genetic Algorithm Based Stocks Recommending System with SCTR Analysis (유전 알고리즘 기반의 SCTR 분석을 통한 종목 추천 시스템)

  • Shin, Yongjung;Shin, Yein;Lim, Sangmook;Park, Jungwoo;Lee, Yujun;Jeon, Minjae;Choi, Joonsoo
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1336-1339
    • /
    • 2013
  • SCTR(StockCharts Technical Ranks)는 주식시장의 주가 상승 강도를 기술적 분석(Technical Analysis)의 6가지 지표에 따라 점수화하여 순위로 나타낸 것이다. 본고에서는 SCTR을 이용하여 국내 주가지수에서 거래되는 증권의 매수 및 매도를 추천하는 시스템을 제시한다. 매수 및 매도의 추천은 유전 알고리즘에 의하여 매매의 신호를 잘 반영하는 SCTR Oscillator 값을 적용한다. 이를 위하여 SCTR을 산출하고, 유전 알고리즘으로 모의투자 하여 구한 상한선과 하한선을 기준으로 주가의 추세를 분석하여 종목을 추천하는 시스템을 구현한다.

An Optimized Combination of π-fuzzy Logic and Support Vector Machine for Stock Market Prediction (주식 시장 예측을 위한 π-퍼지 논리와 SVM의 최적 결합)

  • Dao, Tuanhung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.4
    • /
    • pp.43-58
    • /
    • 2014
  • As the use of trading systems has increased rapidly, many researchers have become interested in developing effective stock market prediction models using artificial intelligence techniques. Stock market prediction involves multifaceted interactions between market-controlling factors and unknown random processes. A successful stock prediction model achieves the most accurate result from minimum input data with the least complex model. In this research, we develop a combination model of ${\pi}$-fuzzy logic and support vector machine (SVM) models, using a genetic algorithm to optimize the parameters of the SVM and ${\pi}$-fuzzy functions, as well as feature subset selection to improve the performance of stock market prediction. To evaluate the performance of our proposed model, we compare the performance of our model to other comparative models, including the logistic regression, multiple discriminant analysis, classification and regression tree, artificial neural network, SVM, and fuzzy SVM models, with the same data. The results show that our model outperforms all other comparative models in prediction accuracy as well as return on investment.

A Evaluation of Strategic Informed Trader Model with Broker (브로커가 존재하는 전략적 정보거래모형의 평가)

  • Kim, Sung-Tak
    • Korean Business Review
    • /
    • v.12
    • /
    • pp.103-118
    • /
    • 1999
  • Many security companies in Korea play the same role as the broker who can do dual trading in the American securities market. It seems that the proper model for the Korean market microstructure should contain the existence of broker. But the broker occupied little attention in U.S. until the early 1990. The purpose of this paper is to review and evaluate the strategic trader models of market microstructure theory which contain the broker as player. Three major models, Sarkar(1995), Chakravarty(1994), Chun, Oh, and Weller(1996) were compared and evaluated critically in the context of the Korean security market microstructure. The model of Sarkar(1995) was evaluated to be more appropriate for the Korean securities market context. Finally, limitations of this paper were indicated and some directions for the further research were suggested.

  • PDF

User Convenience-based Trading Algorithm System (사용자 편의성 기반의 알고리즘 트레이딩 시스템)

  • Lee, Joo-Sang;Kim, Byung-Seo
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.16 no.3
    • /
    • pp.155-161
    • /
    • 2016
  • In current algorithm trading system, general users need to program their algorithms using programing language and APIs provided from financial companies. Therefore, such environment keeps general personal investors away from using algorithm trading. Therefore, this paper focuses on developing user-friendly algorithm trading system which enables general investors to make their own trading algorithms without knowledge on program language and APIs. In the system, investors input their investment criteria through user interface and this automatically creates their own trading algorithms. The proposed system is composed with two parts: server intercommunicating with financial company server to send and to receive financial informations for trading, and client including user convenience-based user interface representing secondary indexes and strategies, and a part generating algorithm. The proposed system performance is proven through simulated-investment in which user sets up his investment strategy, algorithm is generated, and trading is performed based on the algorithm

A Study on the Automatic Adjustment of the Parabolic SAR by using the Fuzzy Logic (퍼지이론을 이용한 파라볼릭 SAR의 자동 조절에 관한 연구)

  • Chae, Seog;Shin, Soo-Young;Kong, In-Yeup
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.2
    • /
    • pp.230-236
    • /
    • 2011
  • This paper proposes the possibility which the fuzzy theory can be used to improve the performance of the parabolic SAR(Stop-And-Reverse) indicator in the trading systems for stock market. The simulation results with data of the KOSPI 200 future show that the occurred number of trading signals and the false signals in the proposed fuzzy SAR indicator is less than that in the conventional SAR indicator. In the conventional SAR system, the incremental value of the acceleration factor is usually setted as 0.02 and the maximum value of the acceleration factor is usually limited as 0.2. But in the proposed fuzzy SAR system, the incremental value and the maximum value of the acceleration factor are automatically adjusted by using the fuzzy rules, which are designed based-on the difference between short-term moving average and medium-term moving average and also based-on the slope of short-term moving average.