• Title/Summary/Keyword: 주사선

Search Result 566, Processing Time 0.024 seconds

Recycling Properties of Visible-Light Driven CdZnS/ZnO Photocatalyst Prepared by a Simple Precipitation Method (단순 침전법으로 제조한 가시광선용 CdZnS/ZnO 광촉매의 재활용 특성)

  • Lee, Gun Dae;Park, Seong Soo;Jin, Youngeup;Hong, Seong Soo
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.196-204
    • /
    • 2017
  • CdZnS/ZnO composite was prepared through low-temperature precipitation and drying method. The property of CdZnS/ZnO as a recyclable photocatalyst for the degradation of rhodamine B (RhB) under visible light irradiation was examined. The sample was characterized by XRD, FE-SEM, XPS, UV-vis DRS and photoluminescence techniques before and after repeated reaction to investigate the change of properties during the photocatalytic reaction. During repeated reaction, the CdZnS/ZnO showed an improved photocatalytic activity and recycle stability. Among two feasible reaction pathways for photocatalytic degradation of RhB, the cleavage of conjugated chromophore was found to predominate over N-dealkylation of chromophore skeleton in the present work. The results indicate that the CdZnS/ZnO, prepared by a simple precipitation method, can be used as a visible-light driven photocatalyst with enhanced cycle stability and activity.

The Taxonomic Consideration of Leaf Epidermal Microsturcture in Glechoma L. (Nepetinae, Lamiaceae) (긴병꽃풀속(Glechoma L., 꿀풀과)의 잎표피 미세구조에 대한 분류학적 검토)

  • Jang, Tae-Soo;Hong, Suk-Pyo
    • Korean Journal of Plant Taxonomy
    • /
    • v.37 no.3
    • /
    • pp.239-254
    • /
    • 2007
  • A comparative micromorphological study was examined on the leaves of the genus Glechoma and related genera (Nepetinae, Lamiaceae) by scanning electron microscopy (SEM) in order to evaluate their significance in the taxonomy. The leaves of taxa Marmoritis, Nepeta sect. Glechomanthe, G. hederacea var. longituba (Korea) are revealed amphistomatic type, while the remnants of taxa had hypostomatic type. The size range of the guard cells is $12.50-28.75{\times}9.17-21.25{\mu}m$: the smallest one was found in M. pharicus ($12.50-15.83{\times}9.17-11.25{\mu}m$), while the largest one was measured to G. hederacea var. longituba (Korea: $28.75-28.88{\times}21.25-21.38{\mu}m$). The stomatal type of genera Agastache, Dracocephalum was mostly diacytic, however for the rest rarely together with anisocytic and anomocytic, except G. hederaca var. longituba (Korea), Meehania urticifolia by having combined with diacytic and anomocytic. The shapes of epidermal cells are differ from in abaxial and adaxial side, and dived with two types (e.g., platelet, stripe pattern). Five types (three glandular, two non-glandular hairs) of trichomes are distributed in leaves. Among trichomes, long and stalk capitates glandular trichome, subsessile glands are different from studied taxa so that leaf micromorphological characters are significance features in the taxonomy.

Fabrication and Characterization of the Carbon Fiber Composite Sheets (탄소섬유를 이용한 열가소성 복합재료 시트 제조 및 특성)

  • Lee, Yun-Seon;Song, Seung-A;Kim, Wan Jin;Kim, Seong-Su;Jung, Yong-Sik
    • Composites Research
    • /
    • v.28 no.4
    • /
    • pp.168-175
    • /
    • 2015
  • Recently, the applications of carbon fiber reinforced plastics (CFRPs) have become broader than ever when it comes to such industries as automotive, ships, aerospace and military because of their lightweight-ness and high mechanical properties. Thermosetting plastics like epoxy are frequently used as the binding matrix in CFRPs due to their high hardness, wetting characteristics and low viscosity. However, they cannot melted and remolded. For this reason, thermosetting plastic wastes have caused serious environmental problems with the production of fiber reinforced plastics. Thus, many studies have focused on the carbon fiber reinforced thermoplastics (CFRTPs) and recycling carbon fiber. In this study, recycled carbon fiber (RCF) was prepared from CFRPs using a pyrolysis method, which was employed to separate resin and carbon fiber. The degree of decomposition for epoxy resin was confirmed from thermal gravimetric analysis (TGA) and scanning electron microscope (SEM). The RCF was cut and ground to prepare a carbon fiber composite sheet (CFCS). CFCS was manufactured by applying recycled carbon fibers and various thermoplastic fibers. Various characterizations were performed, including morphological analyses of surface and cross-section, mechanical properties, and crystallization enthalpy of CFCS at different cooling conditions.

Effect of Diethyldithiocarbamate on Radiation-induced Learning and Memory Impairment in Mouse (방사선 유도 학습기억 장애에 대한 diethyldithiocarbamate의 효과)

  • Jang, Jong-Sik;Kim, Jong-Choon;Moon, Chang-Jong;Jung, U-Hee;Jo, Sung-Kee;Kim, Sung-Ho
    • Journal of Radiation Protection and Research
    • /
    • v.37 no.3
    • /
    • pp.123-128
    • /
    • 2012
  • Evidence suggests that even low-dose irradiation can lead to progressive cognitive decline and memory deficits, which implicates, in part, hippocampal dysfunction in both humans and experimental animals. This study examined whether diethyldithiocarbamate (DDC) could attenuate memory impairment, using passive avoidance and object recognition test, and suppression of hippocampal neurogenesis, using the TUNEL assay and immunohistochemical detection with markers of neurogenesis (Kiel 67 (Ki-67) and doublecortin (DCX)) in adult mice treated with gamma radiation (0.5 or 2 Gy). DDC was administered intraperitonially at a dosage of 1,000 $mg{\cdot}kg^{-1}$ of body weight at 30 min. before irradiation. In passive avoidance and object recognition memory test, the mice, trained for 1 day after acute irradiation (2 Gy) showed significant memory deficits compared with the sham controls. The number of TUNEL-positive apoptotic nuclei in the dentate gyrus (DG) was increased 12 h after irradiation. In addition, the number of Ki-67- and DCX-positive cells were significantly decreased. DDC treatment prior to irradiation attenuated the memory defect, and blocked the apoptotic death. DDC may attenuate memory defect in a relatively low-dose exposure of radiation in adult mice, possibly by inhibiting a detrimental effect of irradiation on hippocampal neurogenesis.

Formation of Hexagonal Ferrite $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$) Prepared by Coprecipitation-oxidation Method (공침산화법에 의한 육방정 페라이트 $Co_2$Z(${Ba_3}{Co_2}{Fe_{24}}{O_{41}}$)의 생성)

  • 신형섭
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.11
    • /
    • pp.1023-1029
    • /
    • 2001
  • Hexagonal ferrite $Co_2$Z(B $a_3$ $Co_2$F $e_{24}$ $O_{41}$ ) was prepared by various coprecipitation-oxidation methods. The formation of $Co_2$Z was studied in order to determine the optimal method. The $Co_2$Z composition hydroxides were prepared with the different oxidation and precipitation from the aqueous solution of $Ba^{2+}$, $Co^{2+}$ and F $e^{2+}$ chloride mixture. The coprecipitates were heat-treated at various temperatures, and their formation phases and microstructures were investigated from the analyses of DTA/TGA, powder XRD and SEM. The $Co_2$Z phase was observed in the case where the precursor will have the amorphous like oxyhydoxide($\delta$-FeOOH), and formed from $Ba_3$F $e_{32}$ $O_{51}$ , BaF $e_{12}$ $O_{19}$ (M-type) and $Ba_2$ $Co_2$F $e_{12}$ $O_{22}$ (Y-type). The $Co_2$Z was synthesized by the heat-treatment of the coprecipitate, which was prepared from the precipitation after oxidizing the chloride mixed solution, above 110$0^{\circ}C$.EX>.

  • PDF

Effect of the Starch Content on the Silicate Dispersion and Rheological Properties of Polypropylene/Starch/Silicate Composites (폴리프로필렌/전분/실리케이트 복합체의 실리케이트 분산 및 유변학적특성에 미치는 전분 함량의 영향)

  • Kim, Youn Cheol;Lee, Chang-Young
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.106-111
    • /
    • 2008
  • Polypropylene (PP)/corn starch master batch (starch-MB)/silicate composites with different corn starch compositions of 10, 20, 30, 40 and 50 were prepared by melt compounding at $200^{\circ}C$, using lab scale Brabender mixer. The content of silicate was fixed at 5 wt%. The composition of starch-MB in composites was confirmed by the existence of hydroxy group and peak intensity in fourier-transform-infrared (FT-IR) spectrum. The thermal properties of the PP/starch-MB/silicate composites were investigated by differential scanning calorimetry (DSC), and thermogravimetric analyzer (TGA). There was no district change in melting temperature, and TGA curve indicates a decrease in degradation temperature with the increase of starch-MB content. The silicate dispersion of the composites was measured by X-ray diffraction (XRD) and transmission electron microscope (TEM). The degree of silicate dispersion in PP/starch-MB/silicate composites depended on the content of starch-MB. There was detectable change in d-spacing and peak intensity of the composite when the content of starch-MB was higher than 20 wt%. The rheological behavior of the composites was explained by both shear thinning effect and elastic property with the starch-MB amount. These effects were remarkable when the content of starch-MB was higher than 20 wt%. These were confirmed by an oscillatory viscometer at $200^{\circ}C$.

Surface Modification of Ba0.6Sr0.4TiO3 by Trimethylsilyl Chloride as a Silylation Agent (Trimethylsilyl Chloride를 Silylation Agent로 사용한 Ba0.6Sr0.4TiO3 나노입자의 표면개질 연구)

  • Lee, Chan;Han, Wooje;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.26 no.4
    • /
    • pp.127-132
    • /
    • 2019
  • In this study, barium strontium titanate (BSTO) with high dielectric perovskite structure was synthesized by liquid-solid solution synthesis and the surface was modified using trimethylsilyl chloride (TMCS) as a silylation agent. Silylation surface modification is a method of reacting -OH ligand on the surface of BSTO nanoparticles with Cl in TMCS to generate HCl and replacing the ligand on the surface of nanoparticles with -Si, -CH3. Silylation was optimized by varying the concentration of TMCS, and the structure of the silicon network was confirmed by Fourier-transform infrared spectroscopy. In addition, the crystallinity of BSTO nanoparticles was confirmed by X-ray diffractometer and the size of the nanoparticles was calculated using Scherrer equation. The field emission scanning electron microscopic image observed the change of the surface-modified BSTO particle size, and the contact angle measurement confirmed the hydrophobic property of the contact angle of 120.9° in the optimized nanoparticles. Finally, the surface-modified BSTO dispersion experiment in de-ionized water confirmed the hydrophobic degree of the nanoparticles.

Powder Characteristics and Thermoelectric Properties of Bi2Te3 Alloys Fabricated by Mechanical Alloying Process (기계적 합금화 공정으로 제조한 Bi2Te3계 합금의 분말특성과 열전특성)

  • 김부양;김희정;오태성;현도빈
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06b
    • /
    • pp.311-352
    • /
    • 1996
  • Peltier 효과를 이용한 열전소자는 열응담 감도가 좋고 선택적 냉각이 가능하며 무소음, 무진동 및 소형화의 장점으로 각종 전자부품의 국부냉각소자로 응용되고 있다. 또한 최근 냉매의 사용없이 냉각이 가능한 열전재료를 이용한 자동차나 가정용 에어컨 및 냉장고 등의 각종 냉방시스템의 개발도 크게 주목을 받고 있다. 기존의 Bi2Te3계 단결정 열전재료는 성능지수는 우수하나, 기계적 취약성에 기인하여 소자가공시 수율 저하가 가장 큰 문제점으로 지적되고 있다. 이와 같은 문제점을 해결하기 위해 최근 단결정에 비해 기계적 강도가 우수한 다결정 열전재료의 제조공정에 관한 연구가 활발히 이루어지고 있으며, 그 일환으로 기계적 합금화법을 이용한 열전재료의 제조공정이 연구되고 있다. 원료금속이 고 에너지 볼-밀 내에서의 연쇄적인 파괴와 압접에 의해 합금분말로 변화되는 기계적 합금화 공정은 상온공정으로 이를 사용하여 다결정 열전재료를 제조시 기존의 다결정 열전재료의 제조공정인 "용해 및 분쇄법'과 비교하여 제조단가를 낮출 수 있는 장점이 있다. 본 연구에서는 전자냉각소자용 열전재료로서 상온부근에서 성능지수가 가장 우수한 p형 (Bi,Sb)2Te3 및 n형 Bi2(Te,Se)3 합금분말을 기계적 합금화 공정으로 제조하여 분말 특성을 분석하였으며, 가압소결 후 열전특성의 변화거동을 연구하였다. 순도 99.99% 이상인 Bi, Sb, Te, Se granule을 (Bi1-xSbx)2Te3 및 Bi2(Te1-ySey)3 조성에 맞게 칭량하여 불과 분말의 무게비 5:1로 강구와 함께 공구강 vial에 장입 후, Spex mixer/mill을 이용하여 기계적 합금화 하였다. 기계적 합금화 공정으로 제조한 분말에 대한 X-선 회절분석과 시차 열분석으로 합금화 정도를 분석하였다. (Bi1-xSbx)2Te3 및 Bi2(Te1-ySey)3 합금분말을 10-5 torr의 진공중에서 300℃∼550℃의 온도로 30분간 가압소결하였다. 가압소결체의 파단면에서의 미세구조를 주사전자현미경으로 관찰하였으며, 상온에서 가압소결체의 열전특성을 측정하였다. (Bi1-xSbx)2Te3의 기계적 합금화에 요구되는 공정시간은 Sb2Te3 함량에 따라 증가하여 x=0.5 조성에서는 4 시간 45분, x=0.75 조성에서는 5 시간, x=1 조성에서는 6 시간 45분의 vibro 밀링이 요구되었다. n형 Bi2(Te1-ySey)3 합금분말의 제조에 요구되는 밀링시간 역시 Bi2Se3 함량 증가에 따라 증가하였으며 Bi2(Te0.95Se0.05)3 합금분말의 제조에는 2시간, Bi2(Te0.9Se0.1)3 및 Bi2(Te0.85Se0.15)3 합금분말의 형성에는 3시간의 bivro 밀링이 요구되었다. 기계적 합금화로 제조한 p형 (Bi0.2Sb0.8)2Te3 및 n형 Bi2(Te0.9Se0.1)3 가압 소결체는 각기 2.9x10-3/K 및 2.1x10-3/K 의 우수한 성능지수를 나타내었다.

  • PDF

Study on the Annealing Effect and Magnetic Properties of a Zn0.7Mn0.3O Film (열처리 효과에 따른 Zn0.7Mn0.3O박막의 자기 특성 연구)

  • Kim, Y.M.;Kim, Y.;Yoon, M.;Park, C.S.;Lee, Y.S.;Jeon, M.S.;Park, I.W.;Park, Y.J.;Lyou, Jong H.;Kim, S.S.
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.4
    • /
    • pp.155-159
    • /
    • 2003
  • We report on the annealing effect and ferromagnetic characteristics of Zn$_{0.7}$Mn$_{0.3}$O film prepared by sol-gel method on the silicon (100) substrate using field emission-scanning electron microscopy (FE-SEM), energy dispersive spectroscopy (EDS), X-ray diffractometry (XRD) and superconducting quantum interference device (SQUID) magnetometry. Magnetic measurements show thatZn$_{0.7}$Mn$_{0.3}$O films exhibit ferromagnetism at 5 K revealing the coercive field of ∼110 Oe for as grown sample and 360, 1035 Oe for samples annealed at 700, 800 $^{\circ}C$, respectively. Our experimental evidence suggests that ferromagnetic precipitates of a manganese oxide may be responsible for the observed ferromagnetic behaviors of the film.he film.

Evaluation of TiN-Zr Hydrogen Permeation Membrane by MLCA (Material Life Cycle Assessment) (물질전과정평가(MLCA)를 통한 TiN-Zr 수소분리막의 환경성 평가)

  • Kim, Min-Gyeom;Son, Jong-Tae;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.24 no.1
    • /
    • pp.9-14
    • /
    • 2018
  • In this study, Material life cycle evaluation was performed to analyze the environmental impact characteristics of TiN-Zr membrane manufacturing process. The software of MLCA was Gabi. Through this, environmental impact assessment was performed for each process. Transition metal nitrides have been researched extensively because of their properties. Among these, TiN has the most attention. TiN is a ceramic materials which possess the good combination of physical and chemical properties, such as high melting point, high hardness, and relatively low specific gravity, high wear resistance and high corrosion resistance. With these properties, TiN plays an important role in functional materials for application in separation hydrogen from fossil fuel. Precursor TiN was synthesized by sol-gel method and zirconium was coated by ball mill method. The metallurgical, physical and thermodynamic characteristics of the membranes were analyzed by using Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDS), X-ray Diffraction (XRD), Thermo Gravimetry/Differential Thermal Analysis (TG/DTA), Brunauer, Emmett, Teller (BET) and Gas Chromatograph System (GP). As a result of characterization and normalization, environmental impacts were 94% in MAETP (Marine Aquatic Ecotoxicity), 2% FAETP (Freshwater Aquatic Ecotoxicity), 2% HTP (Human Toxicity Potential). TiN fabrication process appears to have a direct or indirect impact on the human body. It is believed that the greatest impact that HTP can have on human is the carcinogenic properties. This shows that electricity use has a great influence on ecosystem impact. TiN-Zr was analyzed in Eco-Indicator '99 (EI99) and CML 2001 methodology.