• Title/Summary/Keyword: 주변형률

Search Result 22, Processing Time 0.023 seconds

Comparative Study on the Maximum Principal Strain due to the Hole Spacing and the Detonation Delay Time in the Long-Hole Blasting (장공발파 시 천공간격과 기폭시차에 따른 최대주변형률 비교 연구)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.32 no.3
    • /
    • pp.10-17
    • /
    • 2014
  • In this study, the effect of the hole spacing and the detonation delay time in the long hole blasting of two free surface rock mass on the variation of the principal strains in the vicinity of blasting holes is investigated by use of the finite element program, Visual FEA. The cross section perpendicular to blasting holes is modelled and the maximum principal strains at some major points in the cracking zone are examined. As a result, it was found that the maximum principal strain in the cracking zone becomes larger in the long hole blasting with the narrower hole spacing and the longer detonation delay time. The maximum principal strain was affected by the detonation position in charge hole.

Comparative Study on the Maximum Principal Strain Due to Detonation Pattern at the Rock Surface (암반 절취면에서 기폭 패턴에 따른 최대주변형률의 비교)

  • Song, Jeong-Un;Park, Hoon;Kim, Seung-Kon
    • Explosives and Blasting
    • /
    • v.35 no.4
    • /
    • pp.10-18
    • /
    • 2017
  • In this study, Rock deformation at the artificially advanced face was investigated by using the finite element code relating to the split blasting conducted in urban area. The maximum principal strain according to the detonation pattern and the detonation delay time at the rock surface was compared with the modeled blast section. As a result, it was found that the maximum principal strain was observed a difference depending on the detonation pattern at the rock surface, and the detonation delay time was an important parameter in split blasting.

Analysis of the Maximum Principal Strain on the Splitting Surface by Blasting Detonation Pattern (발파 기폭 패턴에 따른 분할 단면의 최대주변형률 분석)

  • Song, Jeong-Un;Kim, Seung-Kon;Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.2
    • /
    • pp.1-13
    • /
    • 2019
  • In this study, Rock deformation on the splitting surface was investigated by using the finite element code relating to the blasting in urban area. The maximum principal strain according to the blasting detonation pattern was analyzed by the modeled blast section, and deformation of the splitting surface formed by the numerical analysis and the real blasting were compared. As a result, it was found that the maximum principal strain was observed a difference according to the blasting detonation pattern on the splitting surface, and the splitting surface was showed a similar waveform both the numerical analysis and the real blasting.

Analysis of Calcite Twins as Indicators of Paleostress History (고응력의 지시자로서 방해석 쌍정 분석연구)

  • Park, Young-Seog;Jang, Bo-An;Kim, Cheong-Bin;Kang, Seong-Seung
    • Economic and Environmental Geology
    • /
    • v.40 no.4
    • /
    • pp.461-471
    • /
    • 2007
  • A temperature of deformation and the state and direction of paleostress at that time when twins in calcite grains had been produced were observed, using analysis of calcite twins as indicators of paleostress history. The study was performed with the target of carbonate rocks distributed randomly small size in the southern area of south Korea. Considering the appearance of twins (thin or thick straight twins with one or two twin sets), average twin strain (1.235-7.453%), thickness ($0.77-1.94{\mu}m$) and intensity (25.26-41.99 twins/mm) from the results of calculated calcite twins, it is estimated that calcite twins were produced under temperatures lower than approximately $150-200^{\circ}C$. In the magnitudes and directions of principal strains, the maximum shortening strain axis ($e_3\leftrightarrow{\sigma}_1$) is approximately N-S direction in the GS-1 area in the southern Gyeongsang Basin as well as in the BS-1 area in the southern Yongnam Massif, whereas E-W direction in the NR-1 area in the southwestern Ogcheon Fold Belt. In case of the maximum extension strain axis ($e_1\leftrightarrow{\sigma}_3$), it is oriented in NW-SE and NE-SW directions in the GS-1 and BS-1 area, respectively, and in N-S direction in the NR-1 area. That is, it is suggested that the paleostress which produced the calcite twins may be applied at least more than two times in the study area.

Analysis on the Behavior of Reticulated Root Piles for Reinforcing Footing using Computer Program (컴퓨터 프로그램을 이용한 기초보강용 그물식 뿌리말뚝의 거동 분석)

  • 박영호;변광욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1991.10a
    • /
    • pp.348-361
    • /
    • 1991
  • When reinforcing strip footing on a sand 8round with reticulated root piles, reinforcing effect depends on the length , number, cross sectional area, penetration angle, spacing, and Young's modulus of piles. the mode of action of reinfocement tendons in soil isn't one of carring developed tensile stresses but of anisotropic(uni-directional) reduction or even supression of one normal strain rate. R. H. Bassett and N. C. Last proposed that the reinforcement should be located on the direction of minor strain rate which coincides with the tensile strain rate in the velocity characteristics. Based on this proposal the author carried out a series of 2 - dimentional finite element analysis which varies the parameters mentioned above.

  • PDF

A Study on the Parameter Determination of Crustal Movement by Geodetic Technique (측지학적 방법에 의한 지각변동 매개변수 결정에 관한 연구)

  • 조규전;정의환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.19 no.4
    • /
    • pp.405-414
    • /
    • 2001
  • Plate tectonics is a dominant paradigm in modern geophysics. Because of its geological mechanism, Korea has a possibility of earthquake according to plate motion. Besides the disaster of earthquake grows rapidly, the importance of recognition for earthquake has been emphasized. This study attempts to decide crustal movement parameters with GPS data, analysed baseline after processing data with GIPSY-OASIS II S/W, observed from 6 stations in and around the Korean peninsula, and obtained from selected 11 stations in Korea. As a results, maximum shear strain was $0.04{\mu}/yr$ and the mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $97.75^{\circ}$ in and around the Korean peninsula. The average rate of the maximum shear strain($({\gamma}_max)$) is $0.17{\mu}/yr$. The mean azimuth of the maximum compression axes$(A_{z2})$ is estimated as $70.25^{\circ}$ in Korea. Such a pattern of strain distribution is harmonious with that of seismic activity in Korea both historically as well as today.

  • PDF

Optimal Network Design for Enhancing the Precision of National Geodetic Network (국가 측지망의 정밀도 향상을 위한 최적 측지망 설계에 관한 연구)

  • Cho, Jae-Myoung;Yun, Hong-Sik;Wie, Gwang-Jae
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.6
    • /
    • pp.587-594
    • /
    • 2010
  • This paper describe the optimal design of geodetic network by analytical technique based on the quality criteria of network. We described an example of geodetic network design taking into account the precision, reliability and robustness that are the main criteria of network design. The main goal of this paper is to evaluate the criteria to design the geodetic network coinciding with the criteria of high precision(error ellipse, 2DRMS, CEP), reliability(internal and external reliability) and robustness(maximum shear strain, principal strain, dilatation). The network design parameters computed in this study show that precision and reliability has not much improved by about 2% and 3%, respectively, than the observed network, while robustness has much improved by about 3, 100%. It also shown that maximum errors of precision, reliability and robustness were reduced by 5%, 7% and 16,957%, respectively.

Investigation of Strain Behaviour around the Tip of Model Pile - Comparison between Laboratory Model Test and Numerical Analysis - (모형말뚝 선단부 주변의 변형률 거동 분석 - 실내모형실험과 수치해석 비교 -)

  • Lee, Yong Joo;Lee, Jung-Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4C
    • /
    • pp.159-167
    • /
    • 2012
  • In this study, laboratory model pile-load test and finite element analysis were carried out to compare and analyze the strain behaviour around the model pile tip. In order to simulate the pile load, both the LCM(load control method)and DCM(displacement control method) were introduced to determine which one is appropriate for the FE simulation. In contrast to the previous simulation method, two interface elements around the model pile were used to consider the slip effect in the finite element analysis and its results were compared to the model test. Through this study it was found that the degree of non-associated flow was a dominant factor in terms of numerical solution convergence. In addition, an improved FE mesh was required to obtain the symmetric distribution of the maximum shear strain contour.

Nonlinear FE Analysis of RC Shear Walls (철근콘크리트 전단벽의 비선형 유한요소해석)

  • 곽효경;김도연
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.3
    • /
    • pp.293-308
    • /
    • 1999
  • 이 논문에서는 패널, 깊은 보 그리고 전단벽과 같이 평면응력상태하에 있는 철근콘크리트 구조물의 비선형 유한요소해석에 있어서의 직교이방성 콘크리트 구성 모델의 적용성을 보여준다. 등가의 일축 변형을 개념을 토대로 콘크리트의 구성 관계가 주변형률 축과 일치하고 하중이력에 따라 회전하는 직교하는 축에 대해 제시된다. 제안된 모델은 이축 압축응력상태와 인장-압축 응력상태에서 각각 압축강도의 증가와 인장 저항력의 감소효과를 보여주는 이축 파괴영역의 정의를 포함한다. 인장균열이 발생한 후, 콘크리트의 압축강도의 감소효과가 제시되고, 인장강화효과로 알려진 철근에 의해 지지되는 콘크리트의 인장응력이 고려된다. 평균응력과 평균변형률 개념을 사용하여 힘의 평형, 적합조건 그리고 철근과 철근을 둘러싼 콘크리트 사이의 부착응력-슬림 관계를 토대로 인장강화효과를 모사하기 위한 모델이 제안된다. 유한요소 모델에 의한 예측은 유용한 실험자료와의 비교에 의해 입증된다. 이 논문에서는 해석결과와 이상화한 전단 패널실험으로부터 얻어진 실험값의 비교연구가 수행되고, 제안된 모델의 타당성을 보여주기 위해 서로 다른 응력상태하의 전단 패널 보와 벽체의 힘-변위 관계를 평가하였다.

  • PDF

Deformation and Strength Characteristics of Compacted Weathered Granite Soil under Pland Strain Condition (평면변형률 조건에서 다짐화강토의 변형과 강도특성)

  • 정진섭
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.41 no.2
    • /
    • pp.70-79
    • /
    • 1999
  • The lower ground of structure, in which the strip loads, such as earth dams and embankments , are signiificantly working on , is required to be interpreted as a state of plane strain where the strain of intermediated principal stress direction is put '0' . The plane strain state is frquently observed in actural soil engineering case. For those case, drained stress-strain and strength behavior of Iksan weathered granite soil prepared in cubical specimens with cross-anisotropic fabric was studied by conventional triaxial compression, plane strain and cubial triaxial tests with independent control of the three principal stress. All specimens were loaded under conditions of principl stress directions fixed and aligned with the directions of the material axes. As a result of research , when a ground condition is analyzed under plane strain state, the shear strength obtained from the conventional triaxial compression test can be understimated.

  • PDF