• Title/Summary/Keyword: 주기분포

Search Result 1,008, Processing Time 0.027 seconds

Joint Distribution of Wave Crest and its Associated Period in Nonlinear Random Waves (비선형 파동계에서의 파고와 주기 결합 확률분포)

  • Park, Su Ho;Cho, Yong Jun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.5
    • /
    • pp.278-293
    • /
    • 2019
  • The joint distribution of wave height and period has been maltreated despite of its great engineering value due to the absence of any analytical model for wave period, and as a result, no consensus has been reached about the effect of nonlinearity on these joint distribution. On the other hand, there was a great deal of efforts to study the effects of non-linearity on the wave height distribution over the last decades, and big strides has been made. However, these achievements has not been extended to the joint distribution of wave height and period. In this rationale, we first express the joint distribution of wave height and period as the product of the marginal distribution of wave heights with the conditional distribution of associated periods, and proceed to derive the joint distribution of wave heights and periods utilizing the models of Longuet-Higgins (1975, 1983), and Cavanie et al. (1976) for conditional distribution of wave periods, and height distribution derived in this study. The verification was carried out using numerically simulated data based on the Wallops spectrum, and the nonlinear wave data obtained via the numerical simulation of random waves approaching toward the uniform beach of 1:15 slope. It turns out that the joint distribution based on the height distribution for finite banded nonlinear waves, and Cavanie et al.'s model (1976) is most promising.

Influence of Joint Distribution of Wave Heights and Periods on Reliability Analysis of Wave Run-up (처오름의 신뢰성 해석에 대한 파고_주기결합분포의 영향)

  • Lee Cheol-Eung
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.17 no.3
    • /
    • pp.178-187
    • /
    • 2005
  • A reliability analysis model f3r studying the influence of joint distribution of wave heights and periods on wave un-up is presented in this paper. From the definition of failure mode related to wave run-up, a reliability function may be formulated which can be considered uncertainties of water level. In particular, the reliability analysis model can be directly taken into account statistical properties and distributions of wave periods by considering wave period in the reliability function to be a random variable. Also, variations of wave height distribution conditioned to mean wave periods can be taken into account correctly. By comparison of results of additional reliability analysis using extreme distributions with those resulted from joint distribution of wave height and periods, it is found that probabilities of failure evaluated by the latter is larger than those by the former. Although the freeboard of sloped-breakwater structures can be determined by extreme distribution based on the long-term measurements, it may be necessary to investigate additionally into wave run-up by using the present reliability analysis model formulated to consider joint distribution of a single storm event. In addition, it may be found that the effect of spectral bandwidth parameter on reliability index may be little, but the effect of wave height distribution conditioned to mean wave periods is straightforward. Therefore, it may be confirmed that effects of wave periods on the probability of failure of wave run-up may be taken into account through the conditional distribution of wave heights. Finally, the probabilities of failure with respect to freeboard of sloped-breakwater structures can be estimated by which the rational determination of crest level of sloped-breakwater structures may be possible.

액체금속로용 3차원적 연소 해석 코드 개발

  • 양원식;오형숙
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.44-49
    • /
    • 1997
  • 액체금속로용 2차원적 연소 해석 코드 REBUS-2[1]에 횡방향 적분법 및 다항식 전개법에 기초한 3차원적 육방형 노달 방법을 결합하여, 3차원적 연소 해석 코드 REBUS-K를 개발하였다. REBUS-K는 3차원적 중성자속 분포 계산 및 미시적 연소 계산을 통해 노내 연소 해석을 수행하며, 또한 핵연료 방출/재배치 및 재장전, 재처리, 성형가공 등의 노외 주기 계산을 수행한다. 비평형주기 및 평형주기 해석을 수행하며, 평형주기 해석 시에는 지정된 제한 연소도 및 증배계수를 만족시키는 주기 길이와 장전 농축도를 탐색한다. 개발된 코드의 검증 계산을 450 MWt 액체금속로의 비평형주기 및 평형주기 문제에 대하여 수행하였으며, 계산 결과를 Argonne 연구소의 3차원적 연소 해석 코드 REBUS-3[2]의 결과와 비교하였다. 그 결과 원자로 증배계수, 출력 분포, 증식율, 연소도, 장전 핵연료의 농축도, 주기 길이 등의 연소 특성이 수렴 조건 이내에서 일치하였다.

  • PDF

Flow and Heat Transfer Characteristics of a Circular Cylinder with the Periodic Inlet Velocity (주기적인 입구 속도 변동에 따른 원관 주위 유동 및 열전달 특성)

  • Ha, Ji Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.23 no.3
    • /
    • pp.27-32
    • /
    • 2019
  • In this study, the vorticity distribution and the temperature distribution change around a circular cylinder were compared and analyzed with time for constant inlet velocity and periodic inlet velocity. Also, the frequency characteristics of the flow were analyzed by analyzing the time variation of lift and drag and their PSD(power spectral density). In the case of constant inlet velocity, the well known Karman vorticity distribution was shown, and vortices were alternately generated at the upper and lower sides of the circular cylinder. In case of periodic inlet velocity, it was observed that vortex occurred simultaneously in the upper and lower sides of the circular cylinder. In both cases, it was confirmed that the time dependent temperature distribution changes almost the same behavior as the vorticity distribution. For the constant inlet velocity, the vortex flow frequency is 31.15 Hz, and for the periodic inlet velocity, the vortex flow frequency is equal to the preriodic inlet velocity at 15.57 Hz. The mean surface Nusselt number was 99.6 for the constant inlet velocity and 110.7 for the periodic inlet velocity, which showed 11.1% increase in surface heat transfer.

고리 3호기 7주기 운전자료 분석

  • 김재학;이창호;송재웅
    • Nuclear Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.149-159
    • /
    • 1994
  • 노심설계의 검증을 통하여 설계의 신뢰성을 확인하며 이는 발전소 운전의 안전성과 경제성을 향상시킬 수 있는 발판이 된다. 본 보고서는 국산핵연료를 장전한 고리 3호기 7주기의 운전자료 중에서 핵설계와 관련한 인자의 측정치를 설계치와 비교 분석하고 평가하였다. 비교대상이 된 핵특성인자는 반응도 관련 자료인 임계붕소농도, 제어봉가, 등온온도계수 및 감속재온도계수등이고 출력분포 관련자료인 핵반응률 분포, 집합체 출력분포, 반경방향 첨두출력 F$\Delta$H/$^{N}$ , 축방향 출력분포, 축방향 첨두출력 Fq(z)및 노심 평균 축방향 출력편차(AO)등이다. 이들 인자들에 대한 설계치는 측정치와 잘 일치하였으며, 모두 안전성 관련 제한치이내로 만족함을 확인하였다. 또한 이러한 비교 분석을 통하여 후속주기의 핵설계에 운전자료를 반영할 수 있는 근거를 마련하였다.

  • PDF

영광 2호기 4주기 운전자료 비교 분석

  • 이기복;배창준
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.470-479
    • /
    • 1993
  • 노심설계의 검증을 통하여 설계의 신뢰성이 확인되며 이는 발전소 운전의 안전성과 경제성을 향상시킬 수 있는 발판이 된다. 본 기고문은 국산핵연료가 장전되었던 영광 2호기 4주기의 운전자료 중에서 핵설계와 관련한 인자의 측정치를 설계치와 비교 분석하고 평가하였다. 비교대상이 된 핵 특성인자는 반응도 관련 자료인 임계붕소농도, 제어봉가, 등온온도계수 및 감속재온도계수 둥이고 출력분포 관련자료인 핵반응률 분포, 집합체 출력분포, 반경방향 첨두출력 F_ $\Delta$H/$^{N}$ , 축방향 출력분포, 축방향 첨두출력 Fq(z) 및 노심 평균 축방향 출력편차(AO)등이다. 이들 인자들에 대한 설계치는 측정치와 잘 일치하였으며, 모두 안전성 관련 제한치이내로 만족함을 확인하였다. 또한 운전자료의 비교 분석을 통하여 후속주기의 핵설계에 반영할 수 있는 근거를 마련하였다.

  • PDF

Analysis of the Variation Pattern of the Wave Climate in the Sokcho Coastal Zone (속초 연안의 파랑환경 변화양상 분석)

  • Cho, Hong-Yeon;Jeong, Weon-Mu;Baek, Won-Dae;Kim, Sang-Ik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.24 no.2
    • /
    • pp.120-127
    • /
    • 2012
  • Exploratory data analysis was carried out by using the long-term wave climate data in Sokcho coastal zone. The main features found in this study are as follows. The coefficient of variations on the wave height and period are about 0.11 and 0.02, respectively. It also shows that the annual components of the wave height and period are dominant and their amplitudes are 0.24 m and 0.56 seconds, respectively. The amount of intra-annual variation range is about two times greater than that of the inter-annual variation range. The distribution shapes of the wave data are very similar to the log-normal and GEV(generalized extreme value) functions. However, the goodness-of-fit tests based on the KS test show as "rejected" for all suggested density functions. Then, the structure of the timeseries wave height data is roughly estimated as AR(3) model. Based on the wave duration results, it is clearly shown that the continuous and maximum duration is decreased as a power function shape and the total duration is exponentially decreased. Meanwhile, the environment of the Sokcho coastal zone is classified as a wave-dominated environment.

Estimation of Extreme Tide for Risk Analysis of Marine Salvage in the Namhae (southern sea of Korea) (한국 남해의 구난환경 위험성 분석을 위한 극치 조석 산정)

  • Lee Moon-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.12 no.1 s.24
    • /
    • pp.33-38
    • /
    • 2006
  • In marine salvage, extreme tide heights and tidal currents are necessary to anchor an accidental ship. In order to meet this requirement, a simple scheme was developed which yields the spatial informations on the extreme tide from the distribution of approximate highest astronomical tide heights using a relationship between extreme and highest astronomical tides at the standard port. This method is the inference method based on horizontally homogeneity of tide. This scheme was applied to estimate extreme tide heights and tidal currents in the Namhae (southern sea of Korea). The highest astronomical tide heights are computed by amplitude of four major constituents (M2, S2, K1, O1 tide). The estimated extreme tide heights are ranged from 70 to 260 cm for return period 50 years and from 80 to 270cm for return period 100 years, respectively. For return period 100 years, extreme tidal currents show value of 1.55 times as strong as those of normal state.

  • PDF

Reliability Analysis for Decoy using Maintenance Data (정비 데이터를 이용한 기만체계 신뢰도 분석)

  • Gwak, Hye-Rim;Hong, Seok-Jin;Jang, Min-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.10
    • /
    • pp.82-88
    • /
    • 2018
  • The decoy defensive weapon system is a one-shot system. Reliability is maintained through periodic inspection and high reliability is required to confirm whether or not the functioning is normal after launch. The maintenance cycle of a decoy was set up without target reliability and reliability prediction during the development period. However, the number of operations in the military has been increasing, necessitating the optimization of the maintenance cycle. Reliability is analyzed using the maintenance data of a decoy operated for several decades and the optimal maintenance cycle is suggested. In chapter 2, data collection and classification methods are presented and analysis methodology is briefly introduced. In chapter 3, the data distribution analysis and fitness verification confirmed that applying the Weibull distribution is the most suitable for the maintenance data of the decoy. In chapter 4, we present the analysis result of percentile, survival probability and MTBF and the optimal maintenance cycle was derived from the reliability analysis. Finally, we suggest the application methods for this paper in the future.